Suppr超能文献

Myod 和 H19-Igf2 基因座相互作用是小鼠膈肌形成所必需的。

Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse.

机构信息

Genetics and Development Department, Inserm U1016, CNRS UMR 8104, University of Paris Descartes, Institut Cochin, 75014 Paris, France.

出版信息

Development. 2013 Mar;140(6):1231-9. doi: 10.1242/dev.084665. Epub 2013 Feb 13.

Abstract

The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy. Alteration of diaphragm muscle development occurs as early as 15.5 days post-coitum in the double-mutant embryos and leads to a defect in the terminal differentiation of muscle progenitor cells. A negative-feedback loop was detected between Myod and Igf2 in embryonic muscles. Igf2 belongs to the imprinted H19-Igf2 locus. Molecular analyses show binding of Myod on a mesodermal enhancer (CS9) of the H19 gene. Chromatin conformation capture experiments reveal direct interaction of CS9 with the H19 promoter, leading to increased H19 expression in the presence of Myod. In turn, the non-coding H19 RNA represses Igf2 expression in trans. In addition, Igf2 also negatively regulates Myod expression, possibly by reducing the expression of the Srf transcription factor, a known Myod activator. In conclusion, Igf2 and Myod are tightly co-regulated in skeletal muscles and act in parallel pathways in the diaphragm, where they affect the progression of myogenic differentiation. Igf2 is therefore an essential player in the formation of a functional diaphragm in the absence of Myod.

摘要

肌生成调节因子 Myod 和胰岛素样生长因子 2(Igf2)在肌生成分化过程中体外相互作用已得到证实。为了了解它们在体内如何相互作用,我们生产了缺乏 Myod 和 Igf2 基因的双突变小鼠。令人惊讶的是,这些小鼠由于严重的膈肌萎缩而在新生时死亡。双突变胚胎早在妊娠第 15.5 天就出现膈肌肌肉发育改变,并导致肌肉祖细胞的终末分化缺陷。在胚胎肌肉中检测到 Myod 和 Igf2 之间的负反馈环。Igf2 属于印迹的 H19-Igf2 基因座。分子分析显示 Myod 结合在 H19 基因的中胚层增强子(CS9)上。染色质构象捕获实验显示 CS9 与 H19 启动子直接相互作用,导致 Myod 存在时 H19 的表达增加。反过来,非编码的 H19 RNA 以反式抑制 Igf2 的表达。此外,Igf2 还负调控 Myod 的表达,可能通过降低已知的 Myod 激活因子 Srf 转录因子的表达来实现。总之,Igf2 和 Myod 在骨骼肌中紧密协同调节,并在膈肌中平行途径发挥作用,影响肌生成分化的进展。因此,在缺乏 Myod 的情况下,Igf2 是形成功能性膈肌的必要因素。

相似文献

1
Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse.
Development. 2013 Mar;140(6):1231-9. doi: 10.1242/dev.084665. Epub 2013 Feb 13.
2
Disruption of mesodermal enhancers for Igf2 in the minute mutant.
Development. 2002 Apr;129(7):1657-68. doi: 10.1242/dev.129.7.1657.
3
4
Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA.
Nucleic Acids Res. 2011 Aug;39(14):5893-906. doi: 10.1093/nar/gkr209. Epub 2011 Apr 7.
5
Similarity and variation in the insulin-like growth factor 2 - H19 locus in primates.
Physiol Genomics. 2018 Jun 1;50(6):425-439. doi: 10.1152/physiolgenomics.00030.2018. Epub 2018 Mar 30.
6
Alterations in expression of imprinted genes from the H19/IGF2 loci in a multigenerational model of intrauterine growth restriction (IUGR).
Am J Obstet Gynecol. 2016 May;214(5):625.e1-625.e11. doi: 10.1016/j.ajog.2016.01.194. Epub 2016 Feb 12.
9
Regulatory mechanisms at the mouse Igf2/H19 locus.
Mol Cell Biol. 2001 Dec;21(23):8189-96. doi: 10.1128/MCB.21.23.8189-8196.2001.

引用本文的文献

1
LncRNA 4930581F22Rik promotes myogenic differentiation by regulating the ERK/MAPK signaling pathway.
Heliyon. 2024 May 6;10(9):e30640. doi: 10.1016/j.heliyon.2024.e30640. eCollection 2024 May 15.
2
Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review.
Noncoding RNA Res. 2024 Feb 1;9(2):602-611. doi: 10.1016/j.ncrna.2024.01.020. eCollection 2024 Jun.
3
Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis.
J Muscle Res Cell Motil. 2024 Mar;45(1):21-39. doi: 10.1007/s10974-023-09663-3. Epub 2024 Jan 11.
7
Myogenesis controlled by a long non-coding RNA 1700113A16RIK and post-transcriptional regulation.
Cell Regen. 2022 Apr 3;11(1):13. doi: 10.1186/s13619-022-00114-x.
8
Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration.
Front Cell Dev Biol. 2021 Dec 3;9:759237. doi: 10.3389/fcell.2021.759237. eCollection 2021.
9
Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration.
Int J Mol Sci. 2021 Oct 26;22(21):11568. doi: 10.3390/ijms222111568.
10
Characterization of Long Non-coding RNAs Modified by mA RNA Methylation in Skeletal Myogenesis.
Front Cell Dev Biol. 2021 Oct 13;9:762669. doi: 10.3389/fcell.2021.762669. eCollection 2021.

本文引用的文献

1
Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals.
Dev Cell. 2012 Sep 11;23(3):469-81. doi: 10.1016/j.devcel.2012.07.014. Epub 2012 Aug 30.
2
Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms.
Acta Neuropathol. 2013 Jan;125(1):19-32. doi: 10.1007/s00401-012-1019-z. Epub 2012 Jul 24.
3
MiR-483-5p controls angiogenesis in vitro and targets serum response factor.
FEBS Lett. 2011 Oct 3;585(19):3095-100. doi: 10.1016/j.febslet.2011.08.039. Epub 2011 Sep 1.
4
Long range interactions regulate Igf2 gene transcription during skeletal muscle differentiation.
J Biol Chem. 2010 Dec 10;285(50):38969-77. doi: 10.1074/jbc.M110.160986. Epub 2010 Oct 11.
6
The H19 locus: role of an imprinted non-coding RNA in growth and development.
Bioessays. 2010 Jun;32(6):473-80. doi: 10.1002/bies.200900170.
7
Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming.
Dev Cell. 2010 Apr 20;18(4):662-74. doi: 10.1016/j.devcel.2010.02.014.
9
H19 acts as a trans regulator of the imprinted gene network controlling growth in mice.
Development. 2009 Oct;136(20):3413-21. doi: 10.1242/dev.036061. Epub 2009 Sep 17.
10
IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop.
J Cell Biol. 2008 Sep 8;182(5):979-91. doi: 10.1083/jcb.200712110. Epub 2008 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验