Kelley Darcy B, Elliott Taffeta M, Evans Ben J, Hall Ian C, Leininger Elizabeth C, Rhodes Heather J, Yamaguchi Ayako, Zornik Erik
Department of Biological Sciences, Columbia University, New York, New York, 10027.
Department of Psychology, New Mexico Tech, Socorro, New Mexico, 87801.
Genesis. 2017 Jan;55(1-2). doi: 10.1002/dvg.22999.
The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.
脊椎动物的后脑包含控制呼吸、血压和心率等基本功能的神经回路。后脑回路还参与产生发声的节律性运动模式。在大多数四足动物中,发声由呼气驱动,发声和呼吸的基础神经回路必须相连。感知和唤醒也相互关联;社交交流声音的声学特征,例如婴儿的哭声,可以驱动自主反应。维持生命所必需的自主功能与发声表达之间的紧密联系一直是一项重大的体内实验挑战。非洲爪蟾提供了一个利用离体标本解决这一挑战的机会:一个能产生发声和呼吸模式的离体大脑。这个离体大脑能够识别和操纵后脑发声回路,以及通过接收感觉输入、启动运动模式并控制唤醒的前脑回路对其进行激活。成像技术的进步,再加上表达基因编码钙传感器的非洲爪蟾品系的产生,为在整个虚拟行为大脑中成像神经元模式提供了强大工具,这是“大脑计划”的一个目标。将具有独特发声模式的不同物种的神经回路活动进行比较(比较神经组学),可以识别保守特征,从而揭示基本的功能组件。