Axe Neurosciences du Centre de Recherche du Centre Hospitalier Université de Québec (CHUQ), Université Laval, Québec, QC, Canada G1V 4G2.
J Neurosci. 2013 Feb 13;33(7):3067-78. doi: 10.1523/JNEUROSCI.4801-12.2013.
The median preoptic nucleus (MnPO) holds a strategic position in the hypothalamus. It is adjacent to the third ventricle; hence, it can directly access the ionic composition of the CSF. MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as central sensors of extracellular Na(+) concentration (Na(+)). The mechanism underlying Na(+) sensing involves the atypical Na(+) channel, Na(X). Here we sought to determine whether Na(+) influx in Na(+) sensors is actively regulated via interaction with other membrane proteins involved in cellular Na(+) homeostasis, such as Na(+)/K(+)-ATPase. The Na(+)/K(+)-ATPase role was investigated using patch-clamp recordings in rat MnPO dissociated neurons. Na(+) current evoked with hypernatriuric solution was diminished in the absence of ATP/GTP, indicating that Na(+)/K(+)-ATPase play a central role in Na(+) detection. Specific blockers of α1 and α3 isoforms of Na(+)/K(+)-ATPase, ouabain or strophanthidin, inhibited this Na(+) current. However, strophanthidin, which selectively blocks the α1 isoform, was more effective in blocking Na(+) current, suggesting that the Na(+)/K(+)-ATPase-α1 isoform is specifically involved in Na(+) detection. Although strophanthidin did not alter either the membrane resistance or the Na(+) reversal potential, the conductance and the permeability of the Na(X) channel decreased significantly. Our results suggest that Na(+)/K(+)-ATPase interacts with the Na(X) channel and regulates the high Na(+)-evoked Na(+) current via influencing the Na(+) influx rate. This study describes a novel intracellular regulatory pathway of Na(+) detection in MnPO neurons. The α1 isoform of Na(+)/K(+)-ATPase acts as a direct regulatory partner of the Na(X) channel and influences Na(+) influx via controlling the Na(+) permeability of the channel.
中脑视前核(MnPO)在下丘脑占据战略位置。它毗邻第三脑室;因此,它可以直接进入 CSF 的离子组成。MnPO 神经元通过充当细胞外 Na(+)浓度 (Na(+))的中央传感器,在水盐稳态调节中发挥关键作用。Na(+) 感应的机制涉及非典型的 Na(+)通道,Na(X)。在这里,我们试图确定 Na(+)传感器中的 Na(+)内流是否通过与其他参与细胞内 Na(+)稳态的膜蛋白相互作用而被主动调节,例如 Na(+)/K(+) -ATPase。使用离体大鼠 MnPO 神经元的膜片钳记录研究了 Na(+)/K(+) -ATPase 的作用。在没有 ATP/GTP 的情况下,用高渗溶液诱发的 Na(+)电流减少,表明 Na(+)/K(+) -ATPase 在 Na(+)检测中起核心作用。α1 和 α3 同工型 Na(+)/K(+) -ATPase 的特异性抑制剂,哇巴因或哇巴因,抑制了这种 Na(+)电流。然而,选择性阻断 α1 同工型的哇巴因在阻断 Na(+)电流方面更有效,表明 Na(+)/K(+) -ATPase-α1 同工型特异性参与 Na(+)检测。尽管哇巴因既不改变膜电阻也不改变 Na(+)反转电位,但 Na(X)通道的电导和通透性显著降低。我们的结果表明,Na(+)/K(+) -ATPase 与 Na(X)通道相互作用,并通过影响 Na(+)内流率来调节高 Na(+)诱发的 Na(+)电流。这项研究描述了 MnPO 神经元中 Na(+)检测的新的细胞内调节途径。Na(+)/K(+) -ATPase 的 α1 同工型作为 Na(X)通道的直接调节伙伴,通过控制通道的 Na(+)通透性来影响 Na(+)内流。