Centre de Recherche du CHU de Québec, Axe Neurosciences QC, Canada.
Centre de Recherche du CHU de Québec, Axe Neurosciences QC, Canada ; Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval QC, Canada.
Front Cell Neurosci. 2014 Dec 4;8:413. doi: 10.3389/fncel.2014.00413. eCollection 2014.
MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na(+)]out). The mechanism underlying Na(+)-sensing involves Na(+)-flow through the NaX channel, directly regulated by the Na(+)/K(+)-ATPase α1-isoform which controls Na(+)-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na(+)]in). Here we aim to determine whether environmental changes in Na(+) could actively modulate the NaX/Na(+)/K(+)-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na(+)] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na(+)] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na(+)/K(+)-ATPase remained unaltered. This unbalance between NaX and Na(+)/K(+)-ATPase pump proportion would induce a bigger portion of Na(+)/K(+)-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na(+)/K(+)-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.
MnPO 神经元通过作为细胞外钠离子浓度 ([Na(+)]out) 的传感器,在水盐稳态调节中发挥关键作用。Na(+)-感应的机制涉及 NaX 通道的 Na(+) 流,该通道直接受 Na(+)/K(+) -ATPase α1-同工型调节,该同工型通过调节通道通透性来控制 Na(+) 内流。这两个合作伙伴共同形成了一个涉及细胞内钠 ([Na(+)]in) 调节的复合物。在这里,我们旨在确定环境中 Na(+) 的变化是否可以主动调节 NaX/Na(+)/K(+) -ATPase 复合物的活性。我们使用大鼠 MnPO 神经元和 Neuro2a 细胞的膜片钳记录来研究复合物的活性。当大鼠喂食高盐饮食或培养基中 [Na(+)]增加时,复合物的活性被上调。相反,环境 [Na(+)]的下降降低了复合物的活性。有趣的是,在高渗条件下,两个伙伴的共定位率和蛋白水平都上调。在低渗条件下,只有 NaX 蛋白表达增加,而 NaX/Na(+)/K(+) -ATPase 的水平保持不变。NaX 和 Na(+)/K(+) -ATPase 泵之间这种不平衡的比例会导致更大比例的 Na(+)/K(+) -ATPase 控制的无 NaX 通道。因此,我们认为高渗环境通过增加两个伙伴的数量及其共定位率来增加 NaX/Na(+)/K(+) -ATPase α1-同工型的活性,而低渗环境则通过降低泵控制的 NaX 通道的相对数量来下调复合物的活性。