Institute for Pediatric Regenerative Medicine, University of California, Davis, School of Medicine and Shriners Hospital, Sacramento, California 95817, USA.
J Neurosci. 2013 Feb 13;33(7):3113-30. doi: 10.1523/JNEUROSCI.3467-12.2013.
The expression of the gut tumor suppressor gene adenomatous polyposis coli (Apc) and its role in the oligodendroglial lineage are poorly understood. We found that immunoreactive APC is transiently induced in the oligodendroglial lineage during both normal myelination and remyelination following toxin-induced, genetic, or autoimmune demyelination murine models. Using the Cre/loxP system to conditionally ablate APC from the oligodendroglial lineage, we determined that APC enhances proliferation of oligodendroglial progenitor cells (OPCs) and is essential for oligodendrocyte differentiation in a cell-autonomous manner. Biallelic Apc disruption caused translocation of β-catenin into the nucleus and upregulated β-catenin-mediated Wnt signaling in early postnatal but not adult oligodendroglial lineage cells. The results of conditional ablation of Apc or Ctnnb1 (the gene encoding β-catenin) and of simultaneous conditional ablation of Apc and Ctnnb1 revealed that β-catenin is dispensable for postnatal oligodendroglial differentiation, that Apc one-allele deficiency is not sufficient to dysregulate β-catenin-mediated Wnt signaling in oligodendroglial lineage cells, and that APC regulates oligodendrocyte differentiation through β-catenin-independent, as well as β-catenin-dependent, mechanisms. Gene ontology analysis of microarray data suggested that the β-catenin-independent mechanism involves APC regulation of the cytoskeleton, a result compatible with established APC functions in neural precursors and with our observation that Apc-deleted OPCs develop fewer, shorter processes in vivo. Together, our data support the hypothesis that APC regulates oligodendrocyte differentiation through both β-catenin-dependent and additional β-catenin-independent mechanisms.
肠道肿瘤抑制基因腺瘤性息肉病(APC)的表达及其在少突胶质谱系中的作用知之甚少。我们发现,在毒素诱导的、遗传的或自身免疫性脱髓鞘的啮齿动物模型中,正常髓鞘形成和髓鞘再形成过程中,少突胶质谱系中的免疫反应性 APC 短暂诱导。使用 Cre/loxP 系统对少突胶质谱系中的 APC 进行条件性敲除,我们确定 APC 增强了少突胶质前体细胞(OPC)的增殖,并以细胞自主的方式促进少突胶质细胞分化。Apc 双等位基因缺失导致 β-连环蛋白(β-catenin)易位到细胞核中,并上调了β-catenin 介导的 Wnt 信号通路,该过程在出生后早期的少突胶质谱系细胞中发生,但在成年的少突胶质谱系细胞中不发生。条件性敲除 Apc 或 Ctnnb1(编码 β-catenin 的基因)以及同时条件性敲除 Apc 和 Ctnnb1 的结果表明,β-catenin 对于出生后少突胶质分化是可有可无的,Apc 单等位基因缺失不足以使少突胶质谱系细胞中的β-catenin 介导的 Wnt 信号通路失调,并且 APC 通过β-catenin 独立和β-catenin 依赖的机制调节少突胶质细胞分化。微阵列数据分析的基因本体论表明,β-catenin 独立机制涉及 APC 对细胞骨架的调节,这一结果与 APC 在神经前体细胞中的作用以及我们的观察结果一致,即 Apc 缺失的 OPC 在体内发育出更少、更短的突起。综上所述,我们的数据支持 APC 通过β-catenin 依赖和其他β-catenin 独立的机制来调节少突胶质细胞分化的假说。