Suppr超能文献

视觉和听觉序列中的不确定性由模态通用和模态特定的神经系统编码。

Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems.

作者信息

Nastase Samuel, Iacovella Vittorio, Hasson Uri

机构信息

Center for Mind/Brain Sciences (CIMeC), The University of Trento, Rovereto (TN), Italy.

出版信息

Hum Brain Mapp. 2014 Apr;35(4):1111-28. doi: 10.1002/hbm.22238. Epub 2013 Feb 13.

Abstract

Coding for the degree of disorder in a temporally unfolding sensory input allows for optimized encoding of these inputs via information compression and predictive processing. Prior neuroimaging work has examined sensitivity to statistical regularities within single sensory modalities and has associated this function with the hippocampus, anterior cingulate, and lateral temporal cortex. Here we investigated to what extent sensitivity to input disorder, quantified by Markov entropy, is subserved by modality-general or modality-specific neural systems when participants are not required to monitor the input. Participants were presented with rapid (3.3 Hz) auditory and visual series varying over four levels of entropy, while monitoring an infrequently changing fixation cross. For visual series, sensitivity to the magnitude of disorder was found in early visual cortex, the anterior cingulate, and the intraparietal sulcus. For auditory series, sensitivity was found in inferior frontal, lateral temporal, and supplementary motor regions implicated in speech perception and sequencing. Ventral premotor and central cingulate cortices were identified as possible candidates for modality-general uncertainty processing, exhibiting marginal sensitivity to disorder in both modalities. The right temporal pole differentiated the highest and lowest levels of disorder in both modalities, but did not show general sensitivity to the parametric manipulation of disorder. Our results indicate that neural sensitivity to input disorder relies largely on modality-specific systems embedded in extended sensory cortices, though uncertainty-related processing in frontal regions may be driven by both input modalities.

摘要

对随时间展开的感觉输入中的紊乱程度进行编码,可通过信息压缩和预测处理实现对这些输入的优化编码。先前的神经影像学研究考察了对单一感觉模态内统计规律的敏感性,并将此功能与海马体、前扣带回和颞叶外侧皮质联系起来。在此,我们研究了在参与者无需监测输入的情况下,由马尔可夫熵量化的对输入紊乱的敏感性在多大程度上由模态通用或模态特定的神经系统支持。向参与者呈现快速(3.3赫兹)的听觉和视觉序列,这些序列在四个熵水平上变化,同时监测一个很少变化的注视十字。对于视觉序列,在早期视觉皮质、前扣带回和顶内沟发现了对紊乱程度的敏感性。对于听觉序列,在与语音感知和序列相关的额下回、颞叶外侧和辅助运动区域发现了敏感性。腹侧运动前区和中央扣带回皮质被确定为模态通用不确定性处理的可能候选区域,在两种模态中均表现出对紊乱的边际敏感性。右侧颞极区分了两种模态中最高和最低的紊乱水平,但未显示出对紊乱参数操作的一般敏感性。我们的结果表明,神经对输入紊乱的敏感性很大程度上依赖于嵌入在扩展感觉皮质中的模态特定系统,尽管额叶区域中与不确定性相关的处理可能由两种输入模态驱动。

相似文献

1
Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems.
Hum Brain Mapp. 2014 Apr;35(4):1111-28. doi: 10.1002/hbm.22238. Epub 2013 Feb 13.
2
Cross-modal and non-monotonic representations of statistical regularity are encoded in local neural response patterns.
Neuroimage. 2018 Jun;173:509-517. doi: 10.1016/j.neuroimage.2018.02.019. Epub 2018 Feb 23.
4
Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.
Neuropsychologia. 2011 Jun;49(7):1730-40. doi: 10.1016/j.neuropsychologia.2011.02.051. Epub 2011 Mar 9.
5
Effect of auditory input on activations in infant diverse cortical regions during audiovisual processing.
Hum Brain Mapp. 2013 Mar;34(3):543-65. doi: 10.1002/hbm.21453. Epub 2011 Nov 18.
7
Visual cortex signals a mismatch between regularity of auditory and visual streams.
Neuroimage. 2017 Aug 15;157:648-659. doi: 10.1016/j.neuroimage.2017.05.028. Epub 2017 May 18.
9
Premotor cortex is sensitive to auditory-visual congruence for biological motion.
J Cogn Neurosci. 2012 Mar;24(3):575-87. doi: 10.1162/jocn_a_00173. Epub 2011 Nov 29.
10
Perception of surface stickiness in different sensory modalities: an functional MRI study.
Neuroreport. 2020 Mar 25;31(5):411-415. doi: 10.1097/WNR.0000000000001419.

引用本文的文献

1
Time-resolved functional connectivity during visuomotor graph learning.
bioRxiv. 2025 Jul 10:2024.07.04.602005. doi: 10.1101/2024.07.04.602005.
2
Dynamics of Pitch Perception in the Auditory Cortex.
J Neurosci. 2025 Mar 19;45(12):e1111242025. doi: 10.1523/JNEUROSCI.1111-24.2025.
3
Aberrant auditory prediction patterns robustly characterize tinnitus.
Elife. 2024 Dec 30;13:RP99757. doi: 10.7554/eLife.99757.
4
Frontal mechanisms underlying primate calls recognition by humans.
Cereb Cortex Commun. 2023 Nov 2;4(4):tgad019. doi: 10.1093/texcom/tgad019. eCollection 2023.
5
Order of statistical learning depends on perceptive uncertainty.
Curr Res Neurobiol. 2023 Mar 1;4:100080. doi: 10.1016/j.crneur.2023.100080. eCollection 2023.
6
Rethinking statistical learning as a continuous dynamic stochastic process, from the motor systems perspective.
Front Neurosci. 2022 Nov 8;16:1033776. doi: 10.3389/fnins.2022.1033776. eCollection 2022.
7
Activation of the cognitive control network associated with information uncertainty.
Neuroimage. 2021 Apr 15;230:117703. doi: 10.1016/j.neuroimage.2020.117703. Epub 2020 Dec 30.
8
Statistical learning and the uncertainty of melody and bass line in music.
PLoS One. 2019 Dec 19;14(12):e0226734. doi: 10.1371/journal.pone.0226734. eCollection 2019.
9
Automatic and feature-specific prediction-related neural activity in the human auditory system.
Nat Commun. 2019 Aug 1;10(1):3440. doi: 10.1038/s41467-019-11440-1.
10
Depth and the Uncertainty of Statistical Knowledge on Musical Creativity Fluctuate Over a Composer's Lifetime.
Front Comput Neurosci. 2019 Apr 30;13:27. doi: 10.3389/fncom.2019.00027. eCollection 2019.

本文引用的文献

1
Neural systems mediating recognition of changes in statistical regularities.
Neuroimage. 2012 Nov 15;63(3):1730-42. doi: 10.1016/j.neuroimage.2012.08.017. Epub 2012 Aug 11.
2
Multiple sensitivity profiles to diversity and transition structure in non-stationary input.
Neuroimage. 2012 Apr 2;60(2):991-1005. doi: 10.1016/j.neuroimage.2012.01.041. Epub 2012 Jan 12.
3
Time scales of representation in the human brain: weighing past information to predict future events.
Front Hum Neurosci. 2011 Apr 26;5:37. doi: 10.3389/fnhum.2011.00037. eCollection 2011.
4
Exploring the detection of associatively novel events using fMRI.
Hum Brain Mapp. 2011 Mar;32(3):370-81. doi: 10.1002/hbm.21027.
5
What artificial grammar learning reveals about the neurobiology of syntax.
Brain Lang. 2012 Feb;120(2):83-95. doi: 10.1016/j.bandl.2010.08.003. Epub 2010 Oct 12.
6
Prediction, cognition and the brain.
Front Hum Neurosci. 2010 Mar 22;4:25. doi: 10.3389/fnhum.2010.00025. eCollection 2010.
7
Top-down attention affects sequential regularity representation in the human visual system.
Int J Psychophysiol. 2010 Aug;77(2):126-34. doi: 10.1016/j.ijpsycho.2010.05.003. Epub 2010 May 15.
8
Predictive coding or evidence accumulation? False inference and neuronal fluctuations.
PLoS One. 2010 Mar 29;5(3):e9926. doi: 10.1371/journal.pone.0009926.
9
Attentional control in anterior cingulate cortex based on probabilistic cueing.
J Cogn Neurosci. 2011 Mar;23(3):716-27. doi: 10.1162/jocn.2010.21435. Epub 2010 Feb 10.
10
Dynamic coding of events within the inferior frontal gyrus in a probabilistic selective attention task.
J Cogn Neurosci. 2011 Feb;23(2):414-24. doi: 10.1162/jocn.2010.21441. Epub 2010 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验