Suppr超能文献

人类听觉系统中与自动和特征特定预测相关的神经活动。

Automatic and feature-specific prediction-related neural activity in the human auditory system.

机构信息

Centre for Cognitive Neuroscience and Division of Physiological Psychology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.

Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France.

出版信息

Nat Commun. 2019 Aug 1;10(1):3440. doi: 10.1038/s41467-019-11440-1.

Abstract

Prior experience enables the formation of expectations of upcoming sensory events. However, in the auditory modality, it is not known whether prediction-related neural signals carry feature-specific information. Here, using magnetoencephalography (MEG), we examined whether predictions of future auditory stimuli carry tonotopic specific information. Participants passively listened to sound sequences of four carrier frequencies (tones) with a fixed presentation rate, ensuring strong temporal expectations of when the next stimulus would occur. Expectation of which frequency would occur was parametrically modulated across the sequences, and sounds were occasionally omitted. We show that increasing the regularity of the sequence boosts carrier-frequency-specific neural activity patterns during both the anticipatory and omission periods, indicating that prediction-related neural activity is indeed feature-specific. Our results illustrate that even without bottom-up input, auditory predictions can activate tonotopically specific templates.

摘要

先前的经验能够形成对即将到来的感官事件的预期。然而,在听觉模态中,尚不清楚与预测相关的神经信号是否携带特征特定的信息。在这里,我们使用脑磁图(MEG)研究了对未来听觉刺激的预测是否携带音高特异性信息。参与者被动地听四个载波频率(音调)的声音序列,以固定的呈现率,从而确保对下一个刺激何时出现有强烈的时间预期。在序列中,通过参数调制来预期会出现哪个频率,并且偶尔会省略声音。我们表明,增加序列的规则性会在预期和省略期间增强载波频率特异性的神经活动模式,表明与预测相关的神经活动确实是特征特异性的。我们的结果表明,即使没有自下而上的输入,听觉预测也可以激活音高特异性模板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48b0/6672009/53d4673073fa/41467_2019_11440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验