Covance Central Laboratory, 1217 Geneva, Switzerland.
Int J Biol Sci. 2013;9(2):156-63. doi: 10.7150/ijbs.5225. Epub 2013 Jan 26.
A major concern with the identification of renal toxicity using the traditional biomarkers, urea and creatinine, is that toxicity signal definitions are not sensitive to medically important changes in these biomarkers. Traditional renal signal definitions for urea and creatinine have not adequately identified drugs that have generated important medical issues later in development. Here, two clinical trial databases with a posteriori known drug induced renal impairment were analyzed for the presence of a renal impairment biomarker signal from urea (590 patients; age 26-92, median 65) and creatinine (532 patients; age 26-97, median 65). Data was analyzed retrospectively using multiple definitions for the biomarker signal to include values outside stratified reference intervals, values exceeding twofold increases from baseline, values classified by the 2009 NIAID renal toxicity table, change from baseline represented as a Z-score based on intra-individual biological variations, and an adaptive Bayesian methodology that generalizes population- with individual-based methods for evaluating a biomarker signal. The data demonstrated that the adaptive Bayesian methodology generated a prominent drug induced signal for renal impairment at the first visit after drug administration. The signal was directly related to dose and time of drug administration. All other data analysis methods produced none or significantly weaker signals than the adaptive Bayesian approach. Interestingly, serum creatinine and urea are able to detect early kidney dysfunction when the biomarker signal is personalized.
使用传统的生物标志物(尿素和肌酐)来识别肾毒性存在一个主要问题,即毒性信号定义对这些生物标志物的医学重要变化不敏感。传统的尿素和肌酐肾信号定义未能充分识别在后期开发中产生重要医学问题的药物。本研究分析了两个具有事后已知药物诱导肾损伤的临床试验数据库,以评估来自尿素(590 名患者;年龄 26-92 岁,中位数 65 岁)和肌酐(532 名患者;年龄 26-97 岁,中位数 65 岁)的肾损伤生物标志物信号的存在情况。使用多种生物标志物信号定义进行回顾性数据分析,这些定义包括超出分层参考区间的值、与基线相比增加两倍以上的值、根据 2009 年 NIAID 肾毒性表分类的值、基于个体内生物学变异的基线变化表示的 Z 分数,以及一种适应性贝叶斯方法,该方法将基于个体的方法与群体方法相结合,用于评估生物标志物信号。数据表明,适应性贝叶斯方法在药物给药后首次就诊时生成了一个明显的药物诱导肾损伤信号。该信号与药物剂量和给药时间直接相关。所有其他数据分析方法产生的信号都不如适应性贝叶斯方法强。有趣的是,当生物标志物信号个体化时,血清肌酐和尿素能够检测到早期肾功能障碍。