Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore 117576.
J Am Chem Soc. 2013 Mar 13;135(10):3939-52. doi: 10.1021/ja311743m. Epub 2013 Mar 4.
Dye-sensitized solar cells (DSCs) employing the Co(bpy)3 redox mediator have recently attained efficiencies in excess of 12%, increasing the attractiveness of DSCs as an alternative to conventional photovoltaics. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to Co(bpy)3 ions in solution, a process known as recombination in the context of DSC operation, is an important loss mechanism in these solar cells. Here, we employ impedance spectroscopy over a range of temperatures to characterize electron storage, transport, and recombination in efficient DSCs based on the Co(bpy)3 redox mediator, with either the amphiphillic ruthenium sensitizer Z907 or the state-of-the-art organic sensitizer Y123. The temperature dependence of the electron-transport resistance indicates that transport occurs via states at energies lower than commonly assumed for the TiO2 conduction band edge. We show that a non-exponential dependence of capacitance, transport resistance, and recombination resistance on photovoltage can be interpreted as evidence for partial unpinning of the TiO2 energy levels. We also find that the nature of the sensitizing dye determines the predominant recombination route: via the conduction band for Y123 and via band gap states for Z907, which is the main reason for the superior performance of Y123. The different mechanisms appear to arise from changes in electronic coupling between TiO2 donor states and Co(bpy)3 acceptor states, as opposed to changes in the density of TiO2 states or their energetic matching with the acceptor-state distribution. These findings have implications for modeling heterogeneous electron transfer at dye-sensitized semiconductor-solution interfaces in general and for the optimization of DSCs.
染料敏化太阳能电池(DSCs)采用 Co(bpy)3 氧化还原介体,最近的效率超过 12%,增加了 DSCs 作为传统光伏技术替代方案的吸引力。染料敏化纳米晶 TiO2 到溶液中 Co(bpy)3 离子的非均相电子转移,在 DSC 操作的背景下称为复合,是这些太阳能电池中的一个重要损耗机制。在这里,我们采用阻抗谱在一系列温度下表征基于 Co(bpy)3 氧化还原介体的高效 DSCs 中的电子存储、传输和复合,使用的敏化剂为两亲性钌敏化剂 Z907 或最先进的有机敏化剂 Y123。电子传输电阻的温度依赖性表明,传输是通过能量低于 TiO2 导带边缘通常假定的状态进行的。我们表明,电容、传输电阻和复合电阻对光电压的非指数依赖性可以解释为 TiO2 能级部分去钉扎的证据。我们还发现敏化染料的性质决定了主要的复合途径:对于 Y123 是通过导带,对于 Z907 是通过带隙态,这是 Y123 性能优越的主要原因。这些不同的机制似乎源于 TiO2 供体态和 Co(bpy)3 受体态之间的电子耦合变化,而不是 TiO2 态密度或其与受体态分布的能量匹配的变化。这些发现对一般染料敏化半导体-溶液界面的非均相电子转移建模以及 DSCs 的优化具有重要意义。