Suppr超能文献

不同TiO纳米颗粒陷阱态中电子的不同动力学反应性。

Different Kinetic Reactivity of Electrons in Distinct TiO Nanoparticle Trap States.

作者信息

Peper Jennifer L, Gentry Noreen E, Brezny Anna C, Field Mackenzie J, Green Michael T, Mayer James M

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.

Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2021 Jan 14;125(1):680-690. doi: 10.1021/acs.jpcc.0c10633. Epub 2020 Dec 30.

Abstract

Electrons added to TiO and other semiconductors often occupy trap states, whose reactivity can determine the catalytic and stoichiometric chemistry of the material. We previously showed that reduced aqueous colloidal TiO nanoparticles have two distinct classes of thermally-equilibrated trapped electrons, termed Red/ and Blue/ . Presented here are parallel optical and electron paramagnetic resonance (EPR) kinetic studies of the reactivity of these electrons with solution-based oxidants. Optical stopped-flow measurements monitoring reactions of TiO/ with sub-stoichiometric oxidants showed a surprising pattern: an initial fast (seconds) in TiO/ absorbance followed by a secondary, slow (minutes) in the broad TiO/ optical feature. Analysis revealed that the fast decrease is due to the preferential oxidation of the Red/ trap states, and the slow increase results from re-equilibration of electrons from Blue to Red states. This kinetic model was confirmed by freeze-quench EPR measurements. Quantitative analysis of the kinetic data demonstrated that Red/ react ~5 times faster than Blue/ with the nitroxyl radical oxidant, 4-MeO-TEMPO. Similar reactivity patterns were also observed in oxidations of TiO/ by O, which like 4-MeO-TEMPO is a proton-coupled electron transfer (PCET) oxidant, and by the pure electron transfer (ET) oxidant KI. This suggests that the faster intrinsic reactivity of one trap state over another on the seconds-minutes timescale is likely a general feature of reduced TiO reactivity. This differential trap state reactivity is likely to influence the performance of TiO in photochemical/electrochemical devices, and it suggests an opportunity for tuning catalysis.

摘要

添加到二氧化钛(TiO)和其他半导体中的电子通常占据陷阱态,其反应活性可以决定材料的催化化学和化学计量化学。我们之前表明,还原的水性胶体TiO纳米颗粒有两类不同的热平衡俘获电子,称为Red/ 和Blue/ 。本文展示了这些电子与基于溶液的氧化剂反应性的平行光学和电子顺磁共振(EPR)动力学研究。用光学停流测量监测TiO/ 与亚化学计量氧化剂的反应,发现了一个惊人的模式:TiO/ 吸光度最初快速下降(几秒),随后在宽泛的TiO/ 光学特征上出现二次缓慢上升(几分钟)。分析表明,快速下降是由于Red/ 陷阱态的优先氧化,而缓慢上升是由于电子从Blue态重新平衡到Red态。通过冷冻淬灭EPR测量证实了这一动力学模型。动力学数据的定量分析表明,Red/ 与硝酰自由基氧化剂4-甲氧基-TEMPO的反应速度比Blue/ 快约5倍。在TiO/ 被O(与4-甲氧基-TEMPO一样是质子耦合电子转移(PCET)氧化剂)和纯电子转移(ET)氧化剂KI氧化的过程中也观察到了类似的反应模式。这表明在几秒到几分钟的时间尺度上,一种陷阱态比另一种陷阱态具有更快的固有反应活性可能是还原TiO反应活性的一个普遍特征。这种不同陷阱态的反应活性可能会影响TiO在光化学/电化学器件中的性能,并为调节催化作用提供了机会。

相似文献

1
Different Kinetic Reactivity of Electrons in Distinct TiO Nanoparticle Trap States.不同TiO纳米颗粒陷阱态中电子的不同动力学反应性。
J Phys Chem C Nanomater Interfaces. 2021 Jan 14;125(1):680-690. doi: 10.1021/acs.jpcc.0c10633. Epub 2020 Dec 30.
2
Aqueous TiO Nanoparticles React by Proton-Coupled Electron Transfer.水相 TiO2 纳米颗粒通过质子耦合电子转移反应。
Inorg Chem. 2022 Jan 17;61(2):767-777. doi: 10.1021/acs.inorgchem.1c03125. Epub 2021 Dec 30.
7
A Continuum of Proton-Coupled Electron Transfer Reactivity.质子耦合电子转移反应性的连续统。
Acc Chem Res. 2018 Oct 16;51(10):2391-2399. doi: 10.1021/acs.accounts.8b00319. Epub 2018 Sep 20.
8
Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.气凝胶平台在催化中探索介观尺度传输的能力。
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41277-41287. doi: 10.1021/acsami.0c10004. Epub 2020 Sep 3.
10
Adsorption and reactions of O2 on anatase TiO2.锐钛矿 TiO2 上的 O2 吸附和反应。
Acc Chem Res. 2014 Nov 18;47(11):3361-8. doi: 10.1021/ar400312t. Epub 2014 Apr 17.

本文引用的文献

7
Understanding TiO2 photocatalysis: mechanisms and materials.理解二氧化钛光催化作用:作用机制与材料
Chem Rev. 2014 Oct 8;114(19):9919-86. doi: 10.1021/cr5001892. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验