Peper Jennifer L, Gentry Noreen E, Brezny Anna C, Field Mackenzie J, Green Michael T, Mayer James M
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States.
J Phys Chem C Nanomater Interfaces. 2021 Jan 14;125(1):680-690. doi: 10.1021/acs.jpcc.0c10633. Epub 2020 Dec 30.
Electrons added to TiO and other semiconductors often occupy trap states, whose reactivity can determine the catalytic and stoichiometric chemistry of the material. We previously showed that reduced aqueous colloidal TiO nanoparticles have two distinct classes of thermally-equilibrated trapped electrons, termed Red/ and Blue/ . Presented here are parallel optical and electron paramagnetic resonance (EPR) kinetic studies of the reactivity of these electrons with solution-based oxidants. Optical stopped-flow measurements monitoring reactions of TiO/ with sub-stoichiometric oxidants showed a surprising pattern: an initial fast (seconds) in TiO/ absorbance followed by a secondary, slow (minutes) in the broad TiO/ optical feature. Analysis revealed that the fast decrease is due to the preferential oxidation of the Red/ trap states, and the slow increase results from re-equilibration of electrons from Blue to Red states. This kinetic model was confirmed by freeze-quench EPR measurements. Quantitative analysis of the kinetic data demonstrated that Red/ react ~5 times faster than Blue/ with the nitroxyl radical oxidant, 4-MeO-TEMPO. Similar reactivity patterns were also observed in oxidations of TiO/ by O, which like 4-MeO-TEMPO is a proton-coupled electron transfer (PCET) oxidant, and by the pure electron transfer (ET) oxidant KI. This suggests that the faster intrinsic reactivity of one trap state over another on the seconds-minutes timescale is likely a general feature of reduced TiO reactivity. This differential trap state reactivity is likely to influence the performance of TiO in photochemical/electrochemical devices, and it suggests an opportunity for tuning catalysis.
添加到二氧化钛(TiO)和其他半导体中的电子通常占据陷阱态,其反应活性可以决定材料的催化化学和化学计量化学。我们之前表明,还原的水性胶体TiO纳米颗粒有两类不同的热平衡俘获电子,称为Red/ 和Blue/ 。本文展示了这些电子与基于溶液的氧化剂反应性的平行光学和电子顺磁共振(EPR)动力学研究。用光学停流测量监测TiO/ 与亚化学计量氧化剂的反应,发现了一个惊人的模式:TiO/ 吸光度最初快速下降(几秒),随后在宽泛的TiO/ 光学特征上出现二次缓慢上升(几分钟)。分析表明,快速下降是由于Red/ 陷阱态的优先氧化,而缓慢上升是由于电子从Blue态重新平衡到Red态。通过冷冻淬灭EPR测量证实了这一动力学模型。动力学数据的定量分析表明,Red/ 与硝酰自由基氧化剂4-甲氧基-TEMPO的反应速度比Blue/ 快约5倍。在TiO/ 被O(与4-甲氧基-TEMPO一样是质子耦合电子转移(PCET)氧化剂)和纯电子转移(ET)氧化剂KI氧化的过程中也观察到了类似的反应模式。这表明在几秒到几分钟的时间尺度上,一种陷阱态比另一种陷阱态具有更快的固有反应活性可能是还原TiO反应活性的一个普遍特征。这种不同陷阱态的反应活性可能会影响TiO在光化学/电化学器件中的性能,并为调节催化作用提供了机会。