Suppr超能文献

一种用于对药物基因组学基因进行优先级排序的迭代搜索和排名算法。

An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.

作者信息

Xu Rong, Wang Quanqiu

机构信息

Medical Informatics Division, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Int J Comput Biol Drug Des. 2013;6(1-2):18-31. doi: 10.1504/IJCBDD.2013.052199. Epub 2013 Feb 21.

Abstract

Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.

摘要

药物基因组学(PGx)研究旨在识别可能影响药物疗效和毒性的基因变异。对于许多计算药物基因组学研究和个性化医疗而言,机器可理解的药物-基因关系知识至关重要。一个全面且准确的特定于药物基因组学的基因词汇表,对于从科学文献(药物基因组学研究的丰富知识来源)中自动提取药物-基因关系非常重要。在本研究中,我们提出了一种自训练学习技术,以根据33310个人类基因与药物反应的相关性对其进行排序。该算法仅使用一个种子药物基因组学基因,通过2000万篇医学文献摘要来迭代提取并对共现基因进行排序。我们的排序方法能够在所有人类基因中准确地将特定于药物基因组学的基因排在高位。与随机排序的基因相比(精确率:0.032,召回率:0.013,F1值:0.018),该算法在对排名前2.5%的基因进行排序时取得了显著更好的性能(精确率:0.861,召回率:0.548,F1值:0.662)。

相似文献

1
An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.
Int J Comput Biol Drug Des. 2013;6(1-2):18-31. doi: 10.1504/IJCBDD.2013.052199. Epub 2013 Feb 21.
2
3
A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
J Biomed Inform. 2012 Oct;45(5):827-34. doi: 10.1016/j.jbi.2012.04.011. Epub 2012 Apr 27.
5
Using text to build semantic networks for pharmacogenomics.
J Biomed Inform. 2010 Dec;43(6):1009-19. doi: 10.1016/j.jbi.2010.08.005. Epub 2010 Aug 17.
6
Systematic identification of pharmacogenomics information from clinical trials.
J Biomed Inform. 2012 Oct;45(5):870-8. doi: 10.1016/j.jbi.2012.04.005. Epub 2012 Apr 24.
7
PGxCorpus, a manually annotated corpus for pharmacogenomics.
Sci Data. 2020 Jan 2;7(1):3. doi: 10.1038/s41597-019-0342-9.
8
Toward creation of a cancer drug toxicity knowledge base: automatically extracting cancer drug-side effect relationships from the literature.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):90-6. doi: 10.1136/amiajnl-2012-001584. Epub 2013 May 18.
9
Clinical pharmacogenomics testing in the era of next generation sequencing: challenges and opportunities for precision medicine.
Expert Rev Mol Diagn. 2018 May;18(5):411-421. doi: 10.1080/14737159.2018.1461561. Epub 2018 Apr 23.
10
Lack of exposure to pharmacogenomics education among the health care providing students in the West Bank of Palestine.
Drug Metab Pers Ther. 2023 Mar 13;38(3):267-272. doi: 10.1515/dmpt-2022-0180. eCollection 2023 Sep 1.

引用本文的文献

1

本文引用的文献

1
A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
J Biomed Inform. 2012 Oct;45(5):827-34. doi: 10.1016/j.jbi.2012.04.011. Epub 2012 Apr 27.
4
Recent progress in automatically extracting information from the pharmacogenomic literature.
Pharmacogenomics. 2010 Oct;11(10):1467-89. doi: 10.2217/pgs.10.136.
5
Using text to build semantic networks for pharmacogenomics.
J Biomed Inform. 2010 Dec;43(6):1009-19. doi: 10.1016/j.jbi.2010.08.005. Epub 2010 Aug 17.
10
Generating genome-scale candidate gene lists for pharmacogenomics.
Clin Pharmacol Ther. 2009 Aug;86(2):183-9. doi: 10.1038/clpt.2009.42. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验