Drug Metabolism and Pharmacokinetics, AstraZeneca Pharmaceuticals, 35 Gatehouse Dr., Waltham, MA 02451, USA.
Drug Metab Dispos. 2013 May;41(5):1023-34. doi: 10.1124/dmd.112.050450. Epub 2013 Feb 19.
In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo.
在肝微粒体氰化物(CN)捕获测定中,含哌嗪的化合物形成了显著的 N-甲基哌嗪 CN 加合物。提出了形成 N-甲基哌嗪 CN 加合物的两种途径:1)N-甲基哌嗪的α-碳被氧化形成反应性亚氨基离子,可与氰化物离子反应;2)发生 N-脱烷基化,然后与甲醛缩合并脱水生成 N-亚甲基哌嗪亚氨基离子,然后与氰化物离子反应生成 N-甲基 CN 加合物。第二种途径的 CN 加合物被认为是一种人工产物或代谢物。在本研究中,一组 4'-N-烷基哌嗪和 4'-N-[¹³C]甲基标记的哌嗪被用于确定哪种途径占主导地位。在存在氰化物离子的微粒体孵育后,CN 加合物中的 4'-N-[¹³C]甲基基团有很大一部分被未标记的天然甲基基团取代,表明第二种途径占主导地位。对于 4'-N-烷基哌嗪,4'-N-甲基哌嗪 CN 加合物的形成程度受到先前 4'-N-脱烷基化程度的限制。在另一项研究中,当 4'-NH-哌嗪与氰化钾和[¹³C]-标记的甲醛孵育时,在没有 NADPH 或肝微粒体的情况下形成了 4'-N-[¹³C]甲基哌嗪 CN 加合物,表明涉及直接的曼尼希反应。然而,当使用[¹³C]-标记的甲醇或碳酸钾作为一碳供体时,在没有肝微粒体或 NADPH 的情况下,未检测到 4'-N-[¹³C]甲基哌嗪 CN 加合物。通过第二种途径进行生物活化的生物学和毒理学意义需要进一步研究,因为这些形成反应性亚氨基离子的一碳供体可能是内源性的,并且在体内很容易获得。