Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3853-8. doi: 10.1073/pnas.1216629110. Epub 2013 Feb 19.
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.
细胞对外界刺激的肌动蛋白细胞骨架的快速重组是许多运动真核细胞的基本特性。在这里,我们报告的证据表明,趋化性粘菌细胞的肌动蛋白机制接近振荡不稳定性。当平均许多细胞对短脉冲趋化因子 cAMP 的肌动蛋白反应时,我们观察到皮质肌动蛋白的短暂积累,类似于阻尼振荡。然而,在单细胞水平上,响应动力学范围从短而强烈阻尼的响应到缓慢衰减的弱阻尼振荡。此外,在一小部分群体中,我们观察到皮质 F-肌动蛋白浓度的自维持振荡。为了证实振荡机制控制这些细胞中的肌动蛋白动力学,我们系统地将大量细胞暴露于不同频率的周期性脉冲串中。我们的结果表明,在刺激期约为 20 秒时出现共振峰。我们提出了一个延迟反馈模型,该模型基于肌动蛋白系统的调控网络中的时间延迟,解释了我们的实验结果。为了验证该模型,我们对表达 GFP 标记的冠状蛋白和肌动蛋白相互作用蛋白 1融合蛋白的细胞以及缺乏冠状蛋白和肌动蛋白相互作用蛋白 1的敲除突变体进行了刺激实验。这些肌动蛋白结合蛋白增强了肌动蛋白丝的解聚,因此使我们能够估计调控反馈环中的延迟时间。基于此独立估计,我们的模型预测固有周期为 20 秒,与我们在周期性刺激实验中观察到的共振一致。