Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität in Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11417-22. doi: 10.1073/pnas.1014853108. Epub 2011 Jun 27.
Directed cell migration toward spatio-temporally varying chemotactic stimuli requires rapid cytoskeletal reorganization. Numerous studies provide evidence that actin reorganization is controlled by intracellular redistribution of signaling molecules, such as the PI4,5P2/PI3,4,5P3 gradient. However, exploring underlying mechanisms is difficult and requires careful spatio-temporal control of external chemotactic stimuli. We designed a microfluidic setup to generate alternating chemotactic gradient fields for simultaneous multicell exposure, greatly facilitating statistical analysis. For a quantitative description of intracellular response dynamics, we apply alternating time sequences of spatially homogeneous concentration gradients across 300 μm, reorienting on timescales down to a few seconds. Dictyostelium discoideum amoebae respond to gradient switching rates below 0.02 Hz by readapting their migration direction. For faster switching, cellular repolarization ceases and is completely stalled at 0.1 Hz. In this "chemotactically trapped" cell state, external stimuli alternate faster than intracellular feedback is capable to respond by onset of directed migration. To investigate intracellular actin cortex rearrangement during gradient switching, we correlate migratory cell response with actin repolymerization dynamics, quantified by a fluorescence distribution moment of the GFP fusion protein LimEΔcc. We find two fundamentally different cell polarization types and we could reveal the role of PI3-Kinase for cellular repolarization. In the early aggregation phase, PI3-Kinase enhances the capability of D. discoideum cells to readjust their polarity in response to spatially alternating gradient fields, whereas in aggregation competent cells the effect of PI3-Kinase perturbation becomes less relevant.
定向细胞迁移朝向时空变化的趋化刺激需要快速的细胞骨架重组。许多研究提供了证据,表明肌动蛋白重组受信号分子的细胞内重新分布控制,例如 PI4,5P2/PI3,4,5P3 梯度。然而,探索潜在的机制是困难的,需要仔细控制外部趋化刺激的时空分布。我们设计了一种微流控装置,用于生成交替的趋化梯度场,以同时暴露多个细胞,这极大地促进了统计分析。为了定量描述细胞内响应动力学,我们应用了在 300 μm 范围内空间均匀浓度梯度的交替时间序列,重新定向时间尺度可达几秒钟。盘基网柄菌变形虫对梯度切换率低于 0.02 Hz 的反应是通过重新适应其迁移方向。对于更快的切换,细胞去极化停止,并在 0.1 Hz 时完全停滞。在这种“趋化性捕获”的细胞状态下,外部刺激的切换速度比细胞内反馈能够通过定向迁移开始更快。为了研究梯度切换过程中细胞内肌动蛋白皮层的重排,我们将迁移细胞的反应与肌动蛋白重聚合动力学相关联,通过 GFP 融合蛋白 LimEΔcc 的荧光分布矩来定量。我们发现了两种基本不同的细胞极化类型,并揭示了 PI3-激酶在细胞去极化中的作用。在早期聚集阶段,PI3-激酶增强了盘基网柄菌细胞根据空间交替梯度场重新调整其极性的能力,而在聚集能力细胞中,PI3-激酶干扰的影响变得不那么重要。