Suppr超能文献

miRNA 检测水平的差异取决于技术和序列。

Differences in microRNA detection levels are technology and sequence dependent.

机构信息

1Biological Services Department, Weizmann Institute of Science, Rehovot, Israel.

出版信息

RNA. 2013 Apr;19(4):527-38. doi: 10.1261/rna.036475.112. Epub 2013 Feb 19.

Abstract

Identification and quantification of small RNAs are challenging because of their short length, high sequence similarities within microRNA (miRNA) families, and the existence of miRNA isoforms and O-methyl 3' modifications. In this study, the detection performance of three high-throughput commercial platforms, Agilent and Affymetrix microarrays and Illumina next-generation sequencing, was systematically and comprehensively compared. The ability to detect miRNAs was shown to depend strongly on the platform and on miRNA modifications and sequence. Using synthetic transcripts, including mature, precursor, and O-methyl-modified miRNAs spiked into human RNA, a large intensity variation in all spiked-in miRNAs and a reduced capacity in detecting O-methyl-modified miRNAs were observed between the tested platforms. In addition, endogenous human miRNA expression levels were assessed across the platforms. Detected miRNA expression levels were not consistent between platforms. Although biases in miRNA detection were previously described, here the end-point result, i.e., detection intensity, of these biases was investigated on multiple platforms in a controlled fashion. A detailed exploration of a large number of attributes, including base composition, sequence structure, and isoform miRNA attributes, suggests their impact on miRNA expression detection level. This study provides a basis for understanding the attributes that should be considered to adjust platform-dependent detection biases.

摘要

鉴定和定量小 RNA 具有挑战性,因为它们的长度短、miRNA 家族内的序列相似度高、以及 miRNA 同型和 O-甲基 3'修饰的存在。在这项研究中,我们系统而全面地比较了三种高通量商业平台,即安捷伦和安捷伦微阵列和 Illumina 下一代测序的检测性能。miRNA 的检测能力强烈依赖于平台以及 miRNA 的修饰和序列。使用合成转录物,包括成熟、前体和 O-甲基修饰的 miRNA 掺入人 RNA 中,在测试的平台之间观察到所有掺入的 miRNA 的强度变化很大,并且 O-甲基修饰的 miRNA 的检测能力降低。此外,还评估了平台之间的内源性人 miRNA 表达水平。miRNA 表达水平在不同平台之间并不一致。尽管之前已经描述了 miRNA 检测的偏差,但在此,我们以受控的方式在多个平台上研究了这些偏差的终点结果,即检测强度。对大量属性的详细探索,包括碱基组成、序列结构和同工型 miRNA 属性,表明它们对 miRNA 表达检测水平有影响。本研究为理解应考虑哪些属性来调整平台相关的检测偏差提供了基础。

相似文献

1
Differences in microRNA detection levels are technology and sequence dependent.
RNA. 2013 Apr;19(4):527-38. doi: 10.1261/rna.036475.112. Epub 2013 Feb 19.
4
Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays.
BMC Genomics. 2011 Mar 9;12:144. doi: 10.1186/1471-2164-12-144.
5
Hybridization kinetics analysis of an oligonucleotide microarray for microRNA detection.
Acta Biochim Biophys Sin (Shanghai). 2011 Jul;43(7):551-5. doi: 10.1093/abbs/gmr039. Epub 2011 May 31.
6
Detection and Quantification of MicroRNAs by Ligase-Assisted Sandwich Hybridization on a Microarray.
Methods Mol Biol. 2016;1368:53-65. doi: 10.1007/978-1-4939-3136-1_5.
7
Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues.
PLoS One. 2012;7(9):e45105. doi: 10.1371/journal.pone.0045105. Epub 2012 Sep 13.
8
Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing.
RNA. 2009 Nov;15(11):2028-34. doi: 10.1261/rna.1699809. Epub 2009 Sep 10.
9
MicroRNA expression profiling using microarrays.
Nat Protoc. 2008;3(4):563-78. doi: 10.1038/nprot.2008.14.

引用本文的文献

1
3
Fecal miRNAs as potential biomarkers for early detection of colorectal cancer: An updated review.
Biomed J. 2025 Feb;48(1):100769. doi: 10.1016/j.bj.2024.100769. Epub 2024 Jul 17.
4
SARS-CoV-2 produces a microRNA CoV2-miR-O8 in patients with COVID-19 infection.
iScience. 2023 Dec 13;27(1):108719. doi: 10.1016/j.isci.2023.108719. eCollection 2024 Jan 19.
5
Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges.
Int J Mol Sci. 2023 Aug 28;24(17):13340. doi: 10.3390/ijms241713340.
6
Noncoding RNAs in apoptosis: identification and function.
Turk J Biol. 2021 Nov 14;46(1):1-40. doi: 10.3906/biy-2109-35. eCollection 2022.
8
MicroRNA 3' ends shorten during adolescent brain maturation.
Front Mol Neurosci. 2023 Apr 14;16:1168695. doi: 10.3389/fnmol.2023.1168695. eCollection 2023.
9
APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b.
Cell Mol Life Sci. 2022 Jul 25;79(8):446. doi: 10.1007/s00018-022-04443-7.
10
Identification of Stably Expressed Reference microRNAs in Epithelial Ovarian Cancer.
In Vivo. 2022 May-Jun;36(3):1059-1066. doi: 10.21873/invivo.12803.

本文引用的文献

1
Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities.
Mol Med Rep. 2012 Sep;6(3):535-42. doi: 10.3892/mmr.2012.967. Epub 2012 Jun 25.
2
Potential pitfalls in microRNA profiling.
Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):601-16. doi: 10.1002/wrna.1120. Epub 2012 May 7.
3
MicroRNA profiling: approaches and considerations.
Nat Rev Genet. 2012 Apr 18;13(5):358-69. doi: 10.1038/nrg3198.
4
Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells.
PLoS One. 2012;7(2):e31028. doi: 10.1371/journal.pone.0031028. Epub 2012 Feb 8.
5
Removing technical variability in RNA-seq data using conditional quantile normalization.
Biostatistics. 2012 Apr;13(2):204-16. doi: 10.1093/biostatistics/kxr054. Epub 2012 Jan 27.
6
Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies.
BMC Cancer. 2011 Nov 30;11:500. doi: 10.1186/1471-2407-11-500.
7
Non-coding RNAs in human disease.
Nat Rev Genet. 2011 Nov 18;12(12):861-74. doi: 10.1038/nrg3074.
9
MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases.
Mol Cell Biochem. 2012 Jan;360(1-2):147-58. doi: 10.1007/s11010-011-1052-6. Epub 2011 Sep 11.
10
RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries.
RNA. 2011 Sep;17(9):1697-712. doi: 10.1261/rna.2799511. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验