Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands.
Curr Top Med Chem. 2013;13(4):446-57. doi: 10.2174/1568026611313040005.
Positron emission tomography with (89)Zr can be used to follow the behaviour of therapeutic monoclonal antibodies (mAbs) and other biologicals in vivo. The favourable radiophysical characteristics of (89)Zr allow multiple days PET scanning after injection. For the coupling of (89)Zr to proteins six desferrioxamine (DFO)-based bifunctional chelators have been described, five of which forming stable complexes in vivo. Of the methods that give stable complexes three are based on random lysine modification of mAbs and two on site-specific engineering. Up to now only two methods, random lysine modification with N-suc-DFO or DFO-Bz-NCS, have been used in clinical studies. In this review firstly aspects of the physicochemical properties and production of (89)Zr are emphasized as well as important items that have to be taken into account for current good manufacturing practice (cGMP) compliant production of (89)Zr-labeled proteins. Next, the different DFO-based conjugation strategies will be discussed with respect to synthesis, and their (pre)clinical evaluation particularly in the field of oncology.
正电子发射断层扫描用 (89)Zr 可用于跟踪治疗性单克隆抗体 (mAbs) 和其他生物制剂在体内的行为。(89)Zr 的有利放射物理特性允许在注射后进行多天的 PET 扫描。为了将 (89)Zr 与蛋白质偶联,已经描述了六种去铁胺 (DFO) 为基础的双功能螯合剂,其中五种在体内形成稳定的配合物。在产生稳定配合物的方法中,有三种基于 mAbs 的随机赖氨酸修饰,两种基于定点工程。到目前为止,只有两种方法,即用 N-琥珀酰-DFO 或 DFO-Bz-NCS 进行随机赖氨酸修饰,已被用于临床研究。在这篇综述中,首先强调了 (89)Zr 的物理化学性质和生产的方面,以及为符合现行良好生产规范 (cGMP) 的 (89)Zr 标记蛋白生产而必须考虑的重要事项。接下来,将根据合成讨论不同的基于 DFO 的偶联策略,并特别在肿瘤学领域讨论其 (临床前) 评估。