Suppr超能文献

多壁碳纳米管表面修饰对 C57BL/6 小鼠模型生物活性的影响。

Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model.

机构信息

Department Biomedical and Pharmaceutical Sciences, University of Montana, Center for Environmental Health Sciences , Missoula, MT 59812 , USA.

出版信息

Nanotoxicology. 2014 May;8(3):317-27. doi: 10.3109/17435390.2013.779757. Epub 2013 Mar 19.

Abstract

The current study tests the hypothesis that multi-walled carbon nanotubes (MWCNT) with different surface chemistries exhibit different bioactivity profiles in vivo. In addition, the study examined the potential contribution of the NLRP3 inflammasome in MWCNT-induced lung pathology. Unmodified (BMWCNT) and MWCNT that were surface functionalised with -COOH (FMWCNT), were instilled into C57BL/6 mice. The mice were then examined for biomarkers of inflammation and injury, as well as examined histologically for development of pulmonary disease as a function of dose and time. Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1β, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase). The results show that surface modification by the addition of the -COOH group to the MWCNT, significantly reduced the bioactivity and pathogenicity. The results of this study also suggest that in vivo pathogenicity of the BMWCNT and FMWCNT correlates with activation of the NLRP3 inflammasome in the lung.

摘要

本研究旨在验证以下假设,即具有不同表面化学性质的多壁碳纳米管(MWCNT)在体内表现出不同的生物活性谱。此外,本研究还探讨了 NLRP3 炎性体在 MWCNT 诱导的肺病理学中的潜在作用。将未经修饰的(BMWCNT)和经 -COOH 官能化的 MWCNT(FMWCNT)注入 C57BL/6 小鼠体内。然后,检查这些小鼠的炎症和损伤生物标志物,并根据剂量和时间观察其肺部疾病的发展情况。肺部炎症的生物标志物包括细胞因子、介质和炎症细胞的存在(IL-1β、IL-18、IL-33、组织蛋白酶 B 和中性粒细胞)以及损伤标志物(白蛋白和乳酸脱氢酶)。结果表明,MWCNT 表面添加 -COOH 基团的修饰显著降低了其生物活性和致病性。本研究结果还表明,BMWCNT 和 FMWCNT 的体内致病性与肺中 NLRP3 炎性体的激活相关。

相似文献

1
Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model.
Nanotoxicology. 2014 May;8(3):317-27. doi: 10.3109/17435390.2013.779757. Epub 2013 Mar 19.
2
Mouse pulmonary dose- and time course-responses induced by exposure to nitrogen-doped multi-walled carbon nanotubes.
Inhal Toxicol. 2020 Jan;32(1):24-38. doi: 10.1080/08958378.2020.1723746. Epub 2020 Feb 7.
3
Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.
Nanotoxicology. 2016 Nov;10(9):1263-75. doi: 10.1080/17435390.2016.1202351. Epub 2016 Jul 7.
4
Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes.
Nanotoxicology. 2013 Nov;7(7):1179-94. doi: 10.3109/17435390.2012.719649. Epub 2012 Sep 13.
6
Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo.
Nanotoxicology. 2015 May;9(3):365-72. doi: 10.3109/17435390.2014.933904. Epub 2014 Jul 1.
9
IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice.
Nanotoxicology. 2014 Feb;8(1):17-27. doi: 10.3109/17435390.2012.744110. Epub 2012 Nov 14.
10
Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.
Nanotoxicology. 2017 Oct;11(8):1040-1058. doi: 10.1080/17435390.2017.1390177. Epub 2017 Nov 2.

引用本文的文献

2
Characteristics of phosgene aspiration lung injury analyzed based on transcriptomics and proteomics.
Front Genet. 2024 May 17;15:1393665. doi: 10.3389/fgene.2024.1393665. eCollection 2024.
5
Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation.
Nanomaterials (Basel). 2022 Nov 5;12(21):3908. doi: 10.3390/nano12213908.
6
In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT.
Part Fibre Toxicol. 2021 Jul 23;18(1):25. doi: 10.1186/s12989-021-00413-2.
9
Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways.
Adv Sci (Weinh). 2021 Mar 8;8(10):2004588. doi: 10.1002/advs.202004588. eCollection 2021 May.
10
Respiratory and systemic impacts following MWCNT inhalation in B6C3F1/N mice.
Part Fibre Toxicol. 2021 Mar 26;18(1):16. doi: 10.1186/s12989-021-00408-z.

本文引用的文献

2
Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes.
Nanotoxicology. 2013 Nov;7(7):1179-94. doi: 10.3109/17435390.2012.719649. Epub 2012 Sep 13.
5
Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.
Front Biosci (Schol Ed). 2011 Jun 1;3(4):1308-31. doi: 10.2741/228.
6
The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
J Environ Monit. 2011 May;13(5):1164-83. doi: 10.1039/c1em10023h. Epub 2011 Apr 20.
7
Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity.
Part Fibre Toxicol. 2011 Jan 21;8:3. doi: 10.1186/1743-8977-8-3.
8
Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19449-54. doi: 10.1073/pnas.1008155107. Epub 2010 Oct 25.
9
Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung.
J Toxicol Environ Health A. 2010;73(21-22):1530-43. doi: 10.1080/15287394.2010.511578.
10
Outer wall selectively oxidized, water-soluble double-walled carbon nanotubes.
J Am Chem Soc. 2010 Mar 24;132(11):3932-8. doi: 10.1021/ja910626u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验