Suppr超能文献

基于点击化学的 PEG 纳米凝胶溶液的超低蛋白吸附涂层:盐诱导相分离条件下附着的优势及其与 PEG/白蛋白纳米凝胶涂层的比较。

Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

出版信息

Langmuir. 2013 Mar 26;29(12):4128-39. doi: 10.1021/la3051115. Epub 2013 Mar 11.

Abstract

Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by quartz crystal microbalance with dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly(L-lysine)-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface cross-linking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus producing the best performing 100% PEG coating that we have studied to date.

摘要

点击纳米凝胶溶液是通过铜催化的叠氮化物/炔烃环加成(CuAAC)反应来合成的,该反应部分聚合了叠氮化物和炔基功能化的聚(乙二醇)(PEG)单体的溶液。通过第二次点击反应来制备涂层:纳米凝胶溶液的紫外硫醇-炔键合到巯基硅烷化玻璃上。由于铜螯合剂的加入有效地阻止了 CuAAC 反应,我们能够防止大量凝胶化,并在没有溶液反应的情况下将涂层厚度限制在单层纳米凝胶。这使得包含亲水性盐成为可能,亲水性盐导致 PEG 相分离并使纳米凝胶的堆积密度几乎增加一倍,这一点通过石英晶体微天平(QCM-D)得到了证实。通过全内反射荧光(TIRF)显微镜和细胞黏附实验分析蛋白质吸附。由相分离的点击纳米凝胶溶液形成的涂层在吸附盐后,与其他测试的 100%PEG 涂层以及聚(L-赖氨酸)-g-PEG(PLL-g-PEG)涂层相比,吸附的纤维蛋白原显著减少。然而,PEG/白蛋白纳米凝胶涂层的性能仍然优于最佳的 100%PEG 点击纳米凝胶涂层。在存在铜的情况下对点击纳米凝胶涂层进行进一步表面交联,将纤维蛋白原吸附水平进一步降低到与 PEG/白蛋白纳米凝胶涂层接近的水平。然而,这一步骤对长期抵抗细胞黏附的能力产生了负面影响,并通过原子力显微镜(AFM)显著改变了涂层的形态。点击策略的主要优点是部分聚合的溶液几乎可以无限期地稳定,允许在相分离状态下进行附着,而不会有发生大量凝胶化的危险,从而产生了我们迄今为止研究过的性能最佳的 100%PEG 涂层。

相似文献

2
Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels.
Biomaterials. 2008 Dec;29(34):4481-93. doi: 10.1016/j.biomaterials.2008.08.003. Epub 2008 Sep 3.
4
Nanogel surface coatings for improved single-molecule imaging substrates.
J R Soc Interface. 2011 Oct 7;8(63):1400-8. doi: 10.1098/rsif.2010.0669. Epub 2011 Feb 16.
5
Grafting of poly(ethylene glycol) on click chemistry modified Si(100) surfaces.
Langmuir. 2013 Jul 2;29(26):8355-62. doi: 10.1021/la400721c. Epub 2013 Jun 21.
6
The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide.
Biomaterials. 2011 Dec;32(34):8968-78. doi: 10.1016/j.biomaterials.2011.08.034. Epub 2011 Aug 27.
7
Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
Acta Biomater. 2015 Sep;24:64-73. doi: 10.1016/j.actbio.2015.05.037. Epub 2015 Jun 17.
9
Chondroitin sulfate coatings display low platelet but high endothelial cell adhesive properties favorable for vascular implants.
Biomacromolecules. 2014 Jul 14;15(7):2512-20. doi: 10.1021/bm5003762. Epub 2014 Jun 25.
10
Poly-l-lysine/heparin multilayer coatings prevent blood protein adsorption.
J Colloid Interface Sci. 2017 Jan 1;485:288-295. doi: 10.1016/j.jcis.2016.09.046. Epub 2016 Sep 22.

引用本文的文献

1
Controlled swelling of biomaterial devices for improved antifouling polymer coatings.
Sci Rep. 2023 Nov 15;13(1):19950. doi: 10.1038/s41598-023-47192-8.
2
CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review.
RSC Adv. 2023 Jan 18;13(5):2912-2936. doi: 10.1039/d2ra05592a.
4
Photoclick Chemistry: A Bright Idea.
Chem Rev. 2021 Jun 23;121(12):6915-6990. doi: 10.1021/acs.chemrev.0c01212. Epub 2021 Apr 9.
5
Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks.
Polym Chem. 2016 Jan 28;7(4):816-825. doi: 10.1039/C5PY01464F. Epub 2015 Nov 25.

本文引用的文献

1
Click-engineered, bioresponsive, drug-loaded PEG spheres.
Adv Mater. 2009 Nov 20;21(43):4348-52. doi: 10.1002/adma.200900421. Epub 2009 Jun 24.
2
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
5
Polyoxazolines for nonfouling surface coatings--a direct comparison to the gold standard PEG.
Macromol Rapid Commun. 2012 Oct 15;33(19):1663-76. doi: 10.1002/marc.201200422. Epub 2012 Sep 20.
6
Tenside-free preparation of nanogels with high functional β-cyclodextrin content.
ACS Nano. 2012 Sep 25;6(9):8087-93. doi: 10.1021/nn302694q. Epub 2012 Aug 8.
7
Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.
ACS Appl Mater Interfaces. 2012 May;4(5):2498-506. doi: 10.1021/am300197m. Epub 2012 May 2.
8
Aggregates and hydrogels prepared by self-assembly of amphiphilic copolymers with surfactants.
J Colloid Interface Sci. 2012 May 15;374(1):127-34. doi: 10.1016/j.jcis.2012.02.004. Epub 2012 Feb 15.
9
Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels.
Biomacromolecules. 2012 Mar 12;13(3):889-95. doi: 10.1021/bm201802w. Epub 2012 Feb 14.
10
Protein adsorption in three dimensions.
Biomaterials. 2012 Feb;33(5):1201-37. doi: 10.1016/j.biomaterials.2011.10.059. Epub 2011 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验