Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall 314, 3255 S Dearborn St., Chicago, Illinois, 60616, USA.
Biomed Mater. 2013 Apr;8(2):025001. doi: 10.1088/1748-6041/8/2/025001. Epub 2013 Jan 23.
Cell behavior is guided by the complex interplay of matrix mechanical properties as well as soluble and immobilized biochemical signals. The development of synthetic scaffolds that incorporate key functionalities of the native extracellular matrix (ECM) for support of cell proliferation and tissue regeneration requires that stiffness and immobilized concentrations of ECM signals within these biomaterials be tuned and optimized prior to in vitro and in vivo studies. A detailed experimental sensitivity analysis was conducted to identify the key polymerization conditions that result in significant changes in both elastic modulus and immobilized YRGDS within visible light photopolymerized poly(ethylene glycol) diacrylate hydrogels. Among the polymerization conditions investigated, single as well as simultaneous variations in N-vinylpyrrolidinone and precursor concentrations of acryl-PEG3400-YRGDS resulted in a broad range of the hydrogel elastic modulus (81-1178 kPa) and YRGDS surface concentration (0.04-1.72 pmol cm(-2)). Increasing the YRGDS surface concentration enhanced fibroblast cell adhesion and proliferation for a given stiffness, while increases in the hydrogel elastic modulus caused decreases in cell adhesion and increases in proliferation. The identification of key polymerization conditions is critical for the tuning and optimization of biomaterial properties and the controlled study of cell-substrate interactions.
细胞行为受到基质机械性能以及可溶性和固定化生物化学信号的复杂相互作用的指导。为了支持细胞增殖和组织再生,开发包含天然细胞外基质 (ECM) 关键功能的合成支架,需要在体外和体内研究之前调整和优化这些生物材料中的刚度和固定化 ECM 信号浓度。进行了详细的实验灵敏度分析,以确定导致可见光光聚合聚乙二醇二丙烯酸酯水凝胶的弹性模量和固定化 YRGDS 发生显著变化的关键聚合条件。在所研究的聚合条件中,N-乙烯基吡咯烷酮和丙烯酰-PEG3400-YRGDS 前体浓度的单一和同时变化导致水凝胶弹性模量(81-1178kPa)和 YRGDS 表面浓度(0.04-1.72pmol/cm2)的广泛变化。增加 YRGDS 表面浓度可增强给定刚度下的成纤维细胞黏附和增殖,而水凝胶弹性模量的增加会导致细胞黏附减少和增殖增加。关键聚合条件的确定对于生物材料性能的调整和优化以及细胞-底物相互作用的控制研究至关重要。