Suppr超能文献

嗜盐菌视紫红质蛋白与叠氮化物复合物在光反应循环过程中螺旋 F 的大变形。

Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide.

机构信息

Graduate School of Science, Nagoya University, Nagoya, Japan.

出版信息

Biophys J. 2013 Jan 22;104(2):377-85. doi: 10.1016/j.bpj.2012.12.018.

Abstract

Halorhodopsin from Natronomonas pharaonis (pHR), a retinylidene protein that functions as a light-driven chloride ion pump, is converted into a proton pump in the presence of azide ion. To clarify this conversion, we investigated light-induced structural changes in pHR using a C2 crystal that was prepared in the presence of Cl(-) and subsequently soaked in a solution containing azide ion. When the pHR-azide complex was illuminated at pH 9, a profound outward movement (∼4 Å) of the cytoplasmic half of helix F was observed in a subunit with the EF loop facing an open space. This movement created a long water channel between the retinal Schiff base and the cytoplasmic surface, along which a proton could be transported. Meanwhile, the middle moiety of helix C moved inward, leading to shrinkage of the primary anion-binding site (site I), and the azide molecule in site I was expelled out to the extracellular medium. The results suggest that the cytoplasmic half of helix F and the middle moiety of helix C act as different types of valves for active proton transport.

摘要

嗜盐菌视紫红质(pHR)是一种视黄醛蛋白,作为光驱动氯离子泵起作用,在叠氮离子存在下转化为质子泵。为了阐明这种转化,我们使用在 Cl(-)存在下制备的 C2 晶体研究了 pHR 的光诱导结构变化,然后将其浸泡在含有叠氮离子的溶液中。当 pHR-叠氮复合物在 pH 9 下被照射时,EF 环朝向开放空间的亚基中的螺旋 F 的细胞质半部分观察到明显的外向移动(约 4 Å)。这种运动在视黄醛席夫碱和细胞质表面之间创建了一个长的水通道,质子可以沿着该通道运输。同时,螺旋 C 的中间部分向内移动,导致主要阴离子结合位点(位点 I)收缩,而位于位点 I 的叠氮分子被排出到细胞外介质中。结果表明,螺旋 F 的细胞质半部分和螺旋 C 的中间部分充当主动质子运输的不同类型的阀门。

相似文献

2
Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin.
Biophys J. 2015 Jun 2;108(11):2680-90. doi: 10.1016/j.bpj.2015.04.027.
3
Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis.
J Mol Biol. 2010 Feb 26;396(3):564-79. doi: 10.1016/j.jmb.2009.11.061. Epub 2009 Dec 1.
4
Ser-130 of Natronobacterium pharaonis halorhodopsin is important for the chloride binding.
Biophys Chem. 2003 May 1;104(1):209-16. doi: 10.1016/s0301-4622(02)00368-x.
5
Proton transport by halorhodopsin.
Biochemistry. 1996 May 28;35(21):6604-11. doi: 10.1021/bi9601159.
8
Thermodynamics of the early steps in the photocycle of Natronobacterium pharaonis halorhodopsin. Influence of medium and of anion substitution.
Photochem Photobiol. 2001 Sep;74(3):495-503. doi: 10.1562/0031-8655(2001)074<0495:totesi>2.0.co;2.
9
Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site.
Acta Crystallogr F Struct Biol Commun. 2016 Sep;72(Pt 9):692-9. doi: 10.1107/S2053230X16012796. Epub 2016 Aug 26.

引用本文的文献

1
Structural insights into light-driven anion pumping in cyanobacteria.
Nat Commun. 2022 Oct 29;13(1):6460. doi: 10.1038/s41467-022-34019-9.
2
Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family.
Sci Adv. 2020 Feb 7;6(6):eaay2042. doi: 10.1126/sciadv.aay2042. eCollection 2020 Feb.
3
Effect of a bound anion on the structure and dynamics of halorhodopsin from .
Struct Dyn. 2019 Oct 23;6(5):054703. doi: 10.1063/1.5125621. eCollection 2019 Sep.
4
Toward the Optical Cochlear Implant.
Cold Spring Harb Perspect Med. 2019 Aug 1;9(8):a033225. doi: 10.1101/cshperspect.a033225.
5
High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics.
Nat Commun. 2018 May 1;9(1):1750. doi: 10.1038/s41467-018-04146-3.
6
A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis.
Biophys J. 2016 Dec 20;111(12):2600-2607. doi: 10.1016/j.bpj.2016.11.003.
7
Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site.
Acta Crystallogr F Struct Biol Commun. 2016 Sep;72(Pt 9):692-9. doi: 10.1107/S2053230X16012796. Epub 2016 Aug 26.
9
Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin.
Biophys J. 2015 Jun 2;108(11):2680-90. doi: 10.1016/j.bpj.2015.04.027.
10
Crystal structure of Cruxrhodopsin-3 from Haloarcula vallismortis.
PLoS One. 2014 Sep 30;9(9):e108362. doi: 10.1371/journal.pone.0108362. eCollection 2014.

本文引用的文献

1
Crystal structure of the O intermediate of the Leu93→Ala mutant of bacteriorhodopsin.
Proteins. 2012 Oct;80(10):2384-96. doi: 10.1002/prot.24124. Epub 2012 Jun 30.
2
Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin.
J Mol Biol. 2011 Oct 14;413(1):162-76. doi: 10.1016/j.jmb.2011.08.021. Epub 2011 Aug 16.
3
Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping.
J Mol Biol. 2011 Sep 30;412(4):591-600. doi: 10.1016/j.jmb.2011.07.022. Epub 2011 Aug 4.
4
Proton transfer via a transient linear water-molecule chain in a membrane protein.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11435-9. doi: 10.1073/pnas.1104735108. Epub 2011 Jun 27.
6
Structural divergence and functional versatility of the rhodopsin superfamily.
Photochem Photobiol Sci. 2010 Nov;9(11):1458-65. doi: 10.1039/c0pp00236d. Epub 2010 Oct 8.
7
Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis.
J Mol Biol. 2010 Feb 26;396(3):564-79. doi: 10.1016/j.jmb.2009.11.061. Epub 2009 Dec 1.
8
Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels.
J Mol Biol. 2009 Oct 30;393(3):559-73. doi: 10.1016/j.jmb.2009.08.047. Epub 2009 Aug 25.
10
How does a membrane protein achieve a vectorial proton transfer via water molecules?
Chemphyschem. 2008 Dec 22;9(18):2772-8. doi: 10.1002/cphc.200800703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验