Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA.
Biophys J. 2013 Feb 5;104(3):520-32. doi: 10.1016/j.bpj.2012.12.044.
Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton.
数学建模已经确立了其在研究肌动蛋白基运动的生化和力学机制相互作用方面的价值。由于肌动蛋白动力学及其调节的复杂性,许多此类模型是现象学或概念性的,为发挥作用的物理学提供了一般理解。但是,关于肌动蛋白生物化学中许多参与者相互作用的精心测量的动力学数据丰富,迫切需要创建更详细和准确的模型,使研究人员能够剖析单个分子成分的相互依赖作用。此外,没有人的思维可以吸收复杂蛋白质网络背后的所有机制;因此,详细的动力学模型的另一个好处是,众多的结合蛋白、信号机制和生化反应可以在完全显式、可访问、可视化和可重复使用的结构中进行计算组织。在这篇综述中,我们将重点介绍综合和适应性建模如何使研究人员能够解释实验观察结果,并对肌动蛋白细胞骨架的细胞内动力学提出可测试的假设。