Falkenberg Cibele V, Azeloglu Evren U, Stothers Mark, Deerinck Thomas J, Chen Yibang, He John C, Ellisman Mark H, Hone James C, Iyengar Ravi, Loew Leslie M
R. D. Berlin Center for Cell Analysis & Modeling, U. Connecticut School of Medicine, Farmington, CT, United States of America.
Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
PLoS Comput Biol. 2017 Mar 16;13(3):e1005433. doi: 10.1371/journal.pcbi.1005433. eCollection 2017 Mar.
Kidney podocytes' function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology.
肾足细胞的功能依赖于指状突起(足突),这些足突与相邻细胞的足突相互交错,形成肾小球滤过屏障。该屏障的完整性取决于足突中肌动蛋白细胞骨架动力学的空间控制。我们确定了肌动蛋白细胞骨架动力学调节失衡如何导致病理形态。我们获得了足细胞的三维电子显微镜图像,并使用定量特征构建动力学模型,以研究足突内肌动蛋白动力学的调节如何控制局部形态。我们发现,肌动蛋白束调节失衡会导致混乱的空间模式,从而损害足突形态。模拟结果与通过失调的RhoA或Rac1进行细胞骨架重构的实验观察结果一致,并且预测了生化稳定性的补偿机制。我们得出结论,为滤过而优化的足细胞形态本质上是脆弱的,由此局部短暂的生化失衡可能导致与病理生理学相关的永久性形态变化。