Suppr超能文献

活细胞中蛋白质重定位的定量测量。

Quantitative measurement of protein relocalization in live cells.

机构信息

Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina.

出版信息

Biophys J. 2013 Feb 5;104(3):727-36. doi: 10.1016/j.bpj.2012.12.030.

Abstract

Microscope cytometry provides a powerful means to study signaling in live cells. Here we present a quantitative method to measure protein relocalization over time, which reports the absolute fraction of a tagged protein in each compartment. Using this method, we studied an essential step in the early propagation of the pheromone signal in Saccharomyces cerevisiae: recruitment to the membrane of the scaffold Ste5 by activated Gβγ dimers. We found that the dose response of Ste5 recruitment is graded (EC50 = 0.44 ± 0.08 nM, Hill coefficient = 0.8 ± 0.1). Then, we determined the effective dissociation constant (K(de)) between Ste5 and membrane sites during the first few minutes when the negative feedback from the MAPK Fus3 is first activated. K(de) changed during the first minutes from a high affinity of < 0.65 nM to a steady-state value of 17 ± 9 nM. During the same period, the total number of binding sites decreased slightly, from 1940 ± 150 to 1400 ± 200. This work shows how careful quantification of a protein relocalization dynamic can give insight into the regulation mechanisms of a biological system.

摘要

显微镜细胞计量学提供了一种强大的手段来研究活细胞中的信号转导。在这里,我们提出了一种定量方法来测量蛋白质随时间的重定位,它报告了标记蛋白在每个隔室中的绝对分数。使用这种方法,我们研究了酿酒酵母中信息素信号早期传播的一个基本步骤:被激活的 Gβγ 二聚体募集到支架 Ste5 的膜上。我们发现,Ste5 募集的剂量反应是分级的(EC50 = 0.44 ± 0.08 nM,Hill 系数 = 0.8 ± 0.1)。然后,我们确定了在 MAPK Fus3 的负反馈首次被激活的最初几分钟内,Ste5 和膜结合位点之间的有效离解常数(K(de))。在最初的几分钟内,K(de)从低亲和力(<0.65 nM)转变为稳定状态值 17 ± 9 nM。在此期间,结合位点的总数略有减少,从 1940 ± 150 减少到 1400 ± 200。这项工作表明,对蛋白质重定位动力学的仔细定量如何深入了解生物系统的调节机制。

相似文献

1
Quantitative measurement of protein relocalization in live cells.
Biophys J. 2013 Feb 5;104(3):727-36. doi: 10.1016/j.bpj.2012.12.030.
3
Cdc24 regulates nuclear shuttling and recruitment of the Ste5 scaffold to a heterotrimeric G protein in Saccharomyces cerevisiae.
J Biol Chem. 2005 Apr 1;280(13):13084-96. doi: 10.1074/jbc.M410461200. Epub 2005 Jan 18.
5
MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5.
Mol Biol Cell. 2019 Apr 1;30(8):1037-1049. doi: 10.1091/mbc.E18-12-0793. Epub 2019 Feb 6.
6
7
Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain.
Genes Dev. 2006 Jul 15;20(14):1946-58. doi: 10.1101/gad.1413706.
8
Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation.
Science. 2012 Sep 7;337(6099):1218-22. doi: 10.1126/science.1220683. Epub 2012 Aug 9.
10
The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway.
Science. 2006 Feb 10;311(5762):822-6. doi: 10.1126/science.1120941. Epub 2006 Jan 19.

引用本文的文献

1
MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5.
Mol Biol Cell. 2019 Apr 1;30(8):1037-1049. doi: 10.1091/mbc.E18-12-0793. Epub 2019 Feb 6.
3
Spatial and temporal signal processing and decision making by MAPK pathways.
J Cell Biol. 2017 Feb;216(2):317-330. doi: 10.1083/jcb.201609124. Epub 2017 Jan 2.
4
Yeast GPCR signaling reflects the fraction of occupied receptors, not the number.
Mol Syst Biol. 2016 Dec 29;12(12):898. doi: 10.15252/msb.20166910.
5
Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.
Cell Syst. 2016 Nov 23;3(5):444-455.e2. doi: 10.1016/j.cels.2016.10.002. Epub 2016 Oct 27.
6
Using measures of single-cell physiology and physiological state to understand organismic aging.
Aging Cell. 2016 Feb;15(1):4-13. doi: 10.1111/acel.12424. Epub 2015 Nov 29.
7
Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes.
PLoS One. 2014 Oct 10;9(10):e109940. doi: 10.1371/journal.pone.0109940. eCollection 2014.
8
Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3860-9. doi: 10.1073/pnas.1322761111. Epub 2014 Aug 29.
9
Automated quantification of the subcellular localization of multicompartment proteins via Q-SCAn.
Traffic. 2013 Dec;14(12):1200-8. doi: 10.1111/tra.12118. Epub 2013 Oct 10.
10
Feedforward regulation ensures stability and rapid reversibility of a cellular state.
Mol Cell. 2013 Jun 27;50(6):856-68. doi: 10.1016/j.molcel.2013.04.014. Epub 2013 May 16.

本文引用的文献

1
Using Cell-ID 1.4 with R for microscope-based cytometry.
Curr Protoc Mol Biol. 2012 Oct;Chapter 14:Unit 14.18. doi: 10.1002/0471142727.mb1418s100.
2
Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20265-70. doi: 10.1073/pnas.1004042108. Epub 2011 Nov 23.
3
Quantitative analysis of yeast internal architecture using soft X-ray tomography.
Yeast. 2011 Mar;28(3):227-36. doi: 10.1002/yea.1834. Epub 2010 Dec 22.
4
The scaffold protein Ste5 directly controls a switch-like mating decision in yeast.
Nature. 2010 May 6;465(7294):101-5. doi: 10.1038/nature08946. Epub 2010 Apr 18.
5
Symmetry breaking in the life cycle of the budding yeast.
Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a003384. doi: 10.1101/cshperspect.a003384.
6
Quantitative effect of scaffold abundance on signal propagation.
Mol Syst Biol. 2009;5:313. doi: 10.1038/msb.2009.73. Epub 2009 Oct 13.
7
Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics. 2009 Aug 1;25(15):1923-9. doi: 10.1093/bioinformatics/btp358. Epub 2009 Jun 8.
9
Negative feedback that improves information transmission in yeast signalling.
Nature. 2008 Dec 11;456(7223):755-61. doi: 10.1038/nature07513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验