Suppr超能文献

纤维素结合隧道中对纤维二糖链的初步识别可能会影响纤维二糖水解酶的定向特异性。

Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity.

机构信息

Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Biophys J. 2013 Feb 19;104(4):904-12. doi: 10.1016/j.bpj.2012.12.052.

Abstract

Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the -7 to the -5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A.

摘要

纤维二糖水解酶能够连续水解纤维素微纤丝中各个聚合物链的糖苷键,通常对纤维素的还原端或非还原端具有特异性。在此,我们通过分子动力学模拟和自由能计算来研究还原端特异性 Family 7 纤维二糖水解酶(Cel7A)与纤维素链的初始结合过程,该酶来自 Hypocrea jecorina。在无约束模拟中,纤维素从-7 位扩散到-5 位进入隧道,相关的自由能曲线没有出现初始连续性的障碍。不同纤维素链取向的自由能曲线比较表明,热力学上偏好还原端,这表明优先的初始结合可能通过阻碍非生产性(非还原端)结合来影响酶的定向特异性。最后,自由能计算表明,位于隧道入口处的色氨酸 Trp-40 对 Cel7A 中的初始链络合有显著影响。

相似文献

2
Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement.
Biotechnol J. 2019 Mar;14(3):e1700712. doi: 10.1002/biot.201700712. Epub 2018 Jun 19.
4
Anomeric Selectivity and Product Profile of a Processive Cellulase.
Biochemistry. 2017 Jan 10;56(1):167-178. doi: 10.1021/acs.biochem.6b00636. Epub 2016 Dec 27.
5
Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina.
Biochim Biophys Acta Proteins Proteom. 2017 Dec;1865(12):1739-1745. doi: 10.1016/j.bbapap.2017.08.013. Epub 2017 Aug 24.
7
The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B.
J Mol Biol. 2013 Feb 8;425(3):622-35. doi: 10.1016/j.jmb.2012.11.039. Epub 2012 Dec 5.
10
Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase.
Phys Chem Chem Phys. 2018 Mar 14;20(11):7498-7507. doi: 10.1039/c8cp00101d.

引用本文的文献

1
Molecular Details of Polyester Decrystallization via Molecular Simulation.
Macromolecules. 2025 Feb 7;58(4):1795-1803. doi: 10.1021/acs.macromol.4c02130. eCollection 2025 Feb 25.
2
Development of hybrid biomicroparticles: cellulose exposing functionalized fusion proteins.
Microb Cell Fact. 2024 Mar 14;23(1):81. doi: 10.1186/s12934-024-02344-x.
4
Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases.
J Biol Chem. 2021 Aug;297(2):100931. doi: 10.1016/j.jbc.2021.100931. Epub 2021 Jul 1.
5
Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach.
ACS Omega. 2021 Jan 6;6(2):1547-1555. doi: 10.1021/acsomega.0c05361. eCollection 2021 Jan 19.
6
Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):623-657. doi: 10.1007/s10295-020-02301-8. Epub 2020 Aug 25.
7
Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues.
J Biol Chem. 2020 Feb 7;295(6):1454-1463. doi: 10.1074/jbc.RA119.011420. Epub 2019 Dec 17.
9
Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.
J Biol Chem. 2016 Dec 9;291(50):26013-26023. doi: 10.1074/jbc.M116.756007. Epub 2016 Oct 25.
10
Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity.
J Biol Chem. 2014 Nov 21;289(47):32459-68. doi: 10.1074/jbc.M114.604264. Epub 2014 Sep 30.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Endo-exo synergism in cellulose hydrolysis revisited.
J Biol Chem. 2012 Aug 17;287(34):28802-15. doi: 10.1074/jbc.M112.381624. Epub 2012 Jun 25.
3
Product binding varies dramatically between processive and nonprocessive cellulase enzymes.
J Biol Chem. 2012 Jul 13;287(29):24807-13. doi: 10.1074/jbc.M112.365510. Epub 2012 May 30.
4
Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose.
J Biol Chem. 2012 Jun 8;287(24):20603-12. doi: 10.1074/jbc.M112.358184. Epub 2012 Apr 10.
5
Deconstruction of lignocellulosic biomass to fuels and chemicals.
Annu Rev Chem Biomol Eng. 2011;2:121-45. doi: 10.1146/annurev-chembioeng-061010-114205.
6
Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module.
J Biol Chem. 2012 Jan 27;287(5):3147-55. doi: 10.1074/jbc.M111.270389. Epub 2011 Dec 6.
8
Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes.
Biochemistry. 2012 Jan 10;51(1):442-52. doi: 10.1021/bi2011543. Epub 2011 Dec 14.
9
Simulation analysis of the temperature dependence of lignin structure and dynamics.
J Am Chem Soc. 2011 Dec 21;133(50):20277-87. doi: 10.1021/ja206839u. Epub 2011 Nov 28.
10
Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction.
J Am Chem Soc. 2011 Dec 7;133(48):19474-82. doi: 10.1021/ja206842j. Epub 2011 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验