Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Box 124, Lund University, SE-221 00 Lund, Sweden.
Biochemistry. 2012 Jan 10;51(1):296-306. doi: 10.1021/bi201459p. Epub 2011 Dec 7.
The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate-protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultra-high-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 Å at 100 K, 1.25 Å at 298 K) and in complex with lactose (0.86 Å) or glycerol (0.9 Å). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of β-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design.
蛋白质识别碳水化合物是细胞内和细胞间通讯的一个基本方面。理解碳水化合物-蛋白质相互作用的分子基础是合理设计合成配体的前提。在这里,我们报告了半乳凝集素-3(Gal3C)的碳水化合物识别结构域在配体自由状态下(100 K 时为 1.08 Å,298 K 时为 1.25 Å)和与乳糖(0.86 Å)或甘油(0.9 Å)复合物的高分辨率至超高分辨率晶体结构。这些结构揭示了在所有三种状态下,水和碳水化合物氧原子的位置惊人地相似,表明 Gal3C 的结合位点预先组织起来,以协调氧原子的排列,这种排列几乎是识别β-半乳糖苷的最佳排列。氘核磁共振(NMR)弛豫色散实验和分子动力学模拟表明,乳糖结合位点中的所有水分子都在纳秒或更短的时间内与体相水交换。然而,分子动力学模拟确定了在与结晶学观察到的位置一致的位置上存在短暂的水结合,表明结合位点的能量景观在溶液中得以维持。甘油的所有重原子都像 Gal3C 复合物中相应的乳糖原子一样定位。然而,在室温下,通过 NMR 光谱或等温滴定量热法监测,甘油与 Gal3C 的结合在溶液中并不显著,在这些条件下,很容易检测到乳糖结合。这些观察结果为蛋白低温结晶作为一种有价值的筛选方法在基于片段的药物发现中提供了依据,并进一步表明,识别水的位置可能为抑制剂设计提供信息。