Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
Mol Plant. 2013 May;6(3):790-801. doi: 10.1093/mp/sst042. Epub 2013 Feb 27.
Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE mPing in intact rice plants without any exogenous stresses. We found that the transposition activity of mPing is far higher in the lines harboring a non-functional allele at the Rurm1 (Rice ubiquitin-related modifier-1) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the mPing-body region, and the mPing-flanking regions of the non-functional Rurm1 line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements.
微型反向重复转座元件(MITEs)广泛存在于原核生物和真核生物基因组中,其拷贝数可达到数千个。然而,关于影响它们转座的遗传因素知之甚少。在这里,我们表明,破坏一个编码泛素样蛋白的基因,在没有任何外源胁迫的情况下,显著增强了 MITE mPing 在完整水稻植株中的转座活性。我们发现,在携带 Rurm1(水稻泛素相关修饰因子-1)基因座无功能等位基因的系中,mPing 的转座活性远高于野生型系。尽管胞嘧啶甲基化模式的改变会触发外源性胁迫条件下转座元件的激活,但无功能 Rurm1 系的全基因组、mPing 主体区域和 mPing 侧翼区域的甲基化程度没有变化。本研究为细胞内遗传事故增强转座元件转座活性的基因组休克理论模型之一提供了实验证据。