Pogrebnjak A D, Shpak A P, Beresnev V M, Kolesnikov D A, Kunitskii Yu A, Sobol O V, Uglov V V, Komarov F F, Shypylenko A P, Makhmudov N A, Demyanenko A A, Baidak V S, Grudnitskii V V
Sumy State University, St.R-Korsakov 2, 40007 Sumy, Ukraine.
J Nanosci Nanotechnol. 2012 Dec;12(12):9213-9. doi: 10.1166/jnn.2012.6777.
Zr-Ti-Si-N coating had high thermal stability of phase composition and remained structure state under thermal annealing temperatures reached 1180 degrees C in vacuum and 830 degrees C in air. Effect of isochronous annealing on phase composition, structure, and stress state of Zr-Ti-Si-N-ion-plasma deposited coatings (nanocomposite coatings) was reported. Below 1000 degrees C annealing temperature in vacuum, changing of phase composition is determined by appearing of siliconitride crystallites (beta-Si3N4) with hexagonal crystalline lattice and by formation of ZrO2 oxide crystallites. Formation of the latter did not result in decay of solid solution (Zr, Ti)N but increased in it a specific content of Ti-component. Vacuum annealing increased sizes of solid solution nanocrystallites from (12 to 15) in as-deposited coatings to 25 nm after annealing temperature reached 1180 degrees C. One could also find macro- and microrelaxations, which were accompanied by formation of deformation defects, which values reached 15.5 vol.%. Under 530 degrees C annealing in vacuum or in air, nanocomposite coating hardness increased. When Ti and Si concentration increased and three phases nc-ZrN, (Zr, Ti)N-nc, and alpha-Si3N4 were formed, average hardness increased to 40.8 +/- 4 GPa. Annealing to 500 degrees C increased hardness and demonstrated lower spread in values H = 48 +/- 6 GPa and E = (456 +/- 78) GPa. Zr-Ti-Si-N coatings has high wear resistance and low friction coefficient in comparison at a temperature of 500 degrees C possess with coatings TiN, Ti-Si-N.
Zr-Ti-Si-N涂层具有高的相组成热稳定性,在真空中热退火温度达到1180℃以及在空气中热退火温度达到830℃时仍保持结构状态。报道了等温退火对Zr-Ti-Si-N离子等离子体沉积涂层(纳米复合涂层)的相组成、结构和应力状态的影响。在真空中1000℃以下的退火温度下,相组成的变化由具有六方晶格的氮化硅微晶(β-Si3N4)的出现以及ZrO2氧化物微晶的形成所决定。后者的形成并未导致固溶体(Zr,Ti)N的分解,而是使其Ti组分的特定含量增加。真空退火使固溶体纳米微晶的尺寸从沉积态涂层中的(12至15)nm增加到退火温度达到1180℃后的25nm。还可以发现宏观和微观弛豫,其伴随着变形缺陷的形成,缺陷值达到15.5体积%。在真空中或空气中530℃退火时,纳米复合涂层的硬度增加。当Ti和Si浓度增加并形成nc-ZrN、(Zr,Ti)N-nc和α-Si3N4三相时,平均硬度增加到40.8±4GPa。退火至500℃时硬度增加,并且硬度值H = 48±6GPa和弹性模量E =(456±78)GPa的分散性较低。与TiN、Ti-Si-N涂层相比,Zr-Ti-Si-N涂层在500℃温度下具有高耐磨性和低摩擦系数。