Biology Department, College of Science, Sultan Qaboos University, P.O.Box 36, Al Khoud, 123 Muscat, Sultanate of Oman.
Indian J Microbiol. 2012 Mar;52(1):88-93. doi: 10.1007/s12088-011-0239-6. Epub 2011 Oct 28.
Carbon cycling in the hypersaline microbial mats from Chiprana Lake, Spain is primarily dependent on phototrophic microorganisms with the ability to fix CO2 into organics that can be further utilized by aerobic as well as anaerobic heterotrophic bacteria. Here, mat pieces were incubated in seawater amended with (14)C sodium bicarbonate and the incorporation of the radiocarbon in the small subunit ribosomal RNA (SSU rRNA) of mat organisms was followed using scintillation counter and autoradiography. Different domains of SSU rRNA were separated from the total RNA by means of streptavidin-coated magnetic beads and biotin-labeled oligonucleotide probes. The (14)C label was detected in isolated RNA by both scintillation counter and autoradiography, however the latter technique was less sensitive. Using scintillation counter, the radiolabel incorporation increased with time with a maximum rate of 0.18 Bq ng(-1) detected after 25 days. The bacterial SSU rRNA could be captured using the magnetic beads, however the hybridization efficiency was around 20%. The captured RNA was radioactively labeled, which could be mainly due to the fixation of radiocarbon by phototrophic organisms. In conclusion, the incubation of microbial mats in the presence of radiolabeled bicarbonate leads to the incorporation of the (14)C label into RNA molecules through photosynthesis and this label can be detected using scintillation counter. The used approach could be useful in studying the fate of fixed carbon and its uptake by other microorganisms in complex microbial mats, particularly when species-specific probes are used and the hybridization efficiency and RNA yield are further optimized.
西班牙奇普拉纳湖的高盐微生物垫中的碳循环主要依赖于具有将 CO2 固定为有机物的能力的光养微生物,这些有机物可以进一步被好氧和厌氧异养细菌利用。在这里,将垫材料在添加了 (14)C 碳酸氢钠的海水中进行孵育,并使用闪烁计数器和放射自显影法来跟踪放射性碳在垫生物的小亚基核糖体 RNA(SSU rRNA)中的掺入。通过链霉亲和素包被的磁性珠和生物素标记的寡核苷酸探针,从总 RNA 中分离出 SSU rRNA 的不同结构域。通过闪烁计数器和放射自显影均可以检测到分离出的 RNA 中的 (14)C 标记,但后者的灵敏度较低。使用闪烁计数器,随着时间的推移,放射性标记的掺入量增加,在 25 天后检测到的最大速率为 0.18 Bq ng(-1)。可以使用磁性珠捕获细菌的 SSU rRNA,但杂交效率约为 20%。捕获的 RNA 具有放射性标记,这主要可能是由于光养生物固定了放射性碳。总之,在存在放射性标记的碳酸氢盐的情况下孵育微生物垫会导致 (14)C 标记通过光合作用掺入 RNA 分子中,并且可以使用闪烁计数器来检测该标记。当使用特定于物种的探针并进一步优化杂交效率和 RNA 产量时,这种方法可用于研究固定碳的命运及其在复杂微生物垫中被其他微生物的吸收。