Suppr超能文献

组织滋养营养途径中的蛋白水解抑制作用改变了器官发生期大鼠胚胎的 DNA 甲基化和一碳代谢。

Inhibition of proteolysis in histiotrophic nutrition pathways alters DNA methylation and one-carbon metabolism in the organogenesis-stage rat conceptus.

机构信息

Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

J Nutr Biochem. 2013 Aug;24(8):1479-87. doi: 10.1016/j.jnutbio.2012.12.007. Epub 2013 Feb 28.

Abstract

Epigenetic modifications, including DNA methylation, contribute to the transcriptional regulation of developmental genes that control growth and differentiation during embryogenesis. The methyl donor, S-adenosylmethionine (SAM), is biosynthesized from methionine and adenosine triphosphate by methionine adenosyltransferase 2a (Mat2a) in the one-carbon (C1) metabolism pathway. SAM biosynthesis requires a steady supply of nutrients, vitamins and cofactors obtained by the developing conceptus through histiotrophic nutrition pathways (HNPs). The visceral yolk sac (VYS) captures proteins and their substrate cargos by receptor-mediated endocytosis and degrades them using lysosomal proteases. We hypothesize that leupeptin, a protease inhibitor, reduces the availability of methionine and C1 substrates, restricting SAM biosynthesis and altering patterns of DNA methylation. Rat conceptuses were exposed to 50 and 100 μM leupeptin in whole embryo culture for periods of 26 h from gestational day (GD) 10 or 6 h on GD11. After 6 h on GD11, the 100-μM leupeptin treatment significantly decreased methionine in embryo (EMB) and VYS, reduced Mat2a protein levels and inhibited Mat2a specific activity, all of which produced a significant 52% reduction of SAM in the VYS. The 50- and 100-μM leupeptin treatments significantly decreased global methylation levels by 6%-9% in EMB and by 11%-15% in VYS following both 6- and 26-h exposure periods. This study demonstrates that HNP disruption alters C1 activity and significantly reduces global DNA methylation during organogenesis. Because epigenetic reprogramming is crucial for normal differentiation and growth, these findings suggest a possible mechanism through which nutrients and environmental factors may alter early developmental regulation.

摘要

表观遗传修饰,包括 DNA 甲基化,有助于控制胚胎发生过程中生长和分化的发育基因的转录调控。甲基供体 S-腺苷甲硫氨酸(SAM)由蛋氨酸和三磷酸腺苷通过一碳(C1)代谢途径中的蛋氨酸腺苷转移酶 2a(Mat2a)生物合成。SAM 生物合成需要稳定的营养物质、维生素和辅助因子供应,这些物质由通过组织营养途径(HNPs)的发育胚胎获得。内脏卵黄囊(VYS)通过受体介导的内吞作用捕获蛋白质及其底物货物,并使用溶酶体蛋白酶将其降解。我们假设亮抑酶肽,一种蛋白酶抑制剂,通过减少蛋氨酸和 C1 底物的可用性来限制 SAM 生物合成并改变 DNA 甲基化模式。将大鼠胚胎在整个胚胎培养中从妊娠第 10 天(GD)暴露于 50 和 100μM 亮抑酶肽 26 小时或在 GD11 上暴露 6 小时。在 GD11 上 6 小时后,100μM 亮抑酶肽处理显着降低胚胎(EMB)和 VYS 中的蛋氨酸,降低 Mat2a 蛋白水平并抑制 Mat2a 比活性,所有这些都导致 VYS 中 SAM 减少 52%。50 和 100μM 亮抑酶肽处理在 6-和 26 小时暴露期后分别显着降低 EMB 中的全局甲基化水平 6%-9%和 VYS 中的 11%-15%。这项研究表明,HNPs 破坏改变了 C1 活性,并在器官发生期间显着降低了全局 DNA 甲基化。由于表观遗传重编程对于正常分化和生长至关重要,这些发现表明了一种可能的机制,通过该机制,营养物质和环境因素可能会改变早期发育调控。

相似文献

6
Comparative response of rat and rabbit conceptuses in vitro to inhibitors of histiotrophic nutrition.
Birth Defects Res B Dev Reprod Toxicol. 2015 Feb;104(1):1-10. doi: 10.1002/bdrb.21134. Epub 2015 Feb 4.

引用本文的文献

1
Maternal metabolism influences neural tube closure.母体代谢影响神经管闭合。
Trends Endocrinol Metab. 2023 Sep;34(9):539-553. doi: 10.1016/j.tem.2023.06.005. Epub 2023 Jul 17.

本文引用的文献

3
The role of DNA methylation in mammalian development.DNA 甲基化在哺乳动物发育中的作用。
Reprod Biomed Online. 2011 Jun;22(6):529-35. doi: 10.1016/j.rbmo.2011.02.016. Epub 2011 Mar 9.
4
Rat embryo cultures for in vitro teratology.用于体外致畸学研究的大鼠胚胎培养
Curr Protoc Toxicol. 2001 May;Chapter 13:Unit13.2. doi: 10.1002/0471140856.tx1302s06.
5
Chromatin plasticity in pluripotent cells.多能细胞中的染色质可塑性。
Essays Biochem. 2010 Sep 20;48(1):245-62. doi: 10.1042/bse0480245.
6
Epigenomic disruption: the effects of early developmental exposures.表观基因组破坏:早期发育暴露的影响
Birth Defects Res A Clin Mol Teratol. 2010 Oct;88(10):938-44. doi: 10.1002/bdra.20685.
10
Epigenetics in development.发育中的表观遗传学。
Dev Dyn. 2007 Apr;236(4):1144-56. doi: 10.1002/dvdy.21094.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验