Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
Biochemistry. 2013 Apr 2;52(13):2262-73. doi: 10.1021/bi301654m. Epub 2013 Mar 19.
In two-component signal transduction, response regulator proteins contain the catalytic machinery for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor kinase or autophosphorylate using various small molecule phosphodonors. Although response regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the kinetic determinants of the autophosphorylation reaction and how those determinants might vary for different response regulators and phosphodonors are largely unknown. We characterized the autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli CheY that contained substitutions primarily at nonconserved active site positions D + 2 (CheY residue 59) and T + 2 (CheY residue 89), two residues C-terminal to conserved D57 and T87, respectively. Overall, the CheY variants exhibited a >10(5)-fold range of rate constants (kphos/KS) for reaction with phosphoramidate, acetyl phosphate, or monophosphoimidazole, with the great majority of rates enhanced versus that of wild-type CheY. Although phosphodonor preference varied substantially, nearly all the CheY variants reacted faster with phosphoramidate than acetyl phosphate. Correlation between the increased positive charge of the D + 2 and T + 2 side chains and faster rates indicated electrostatic interactions are a kinetic determinant. Moreover, sensitivities of rate constants to ionic strength indicated that both long-range and localized electrostatic interactions influence autophosphorylation kinetics. The increased nonpolar surface area of the D + 2 and T + 2 side chains also correlated with an enhanced autophosphorylation rate, especially for reaction with phosphoramidate and monophosphoimidazole. Computer docking suggested that highly accelerated monophosphoimidazole autophosphorylation rates for CheY variants with a tyrosine at position T + 2 likely reflect structural mimicry of phosphotransfer from the sensor kinase histidyl phosphate.
在双组分信号转导中,响应调节蛋白包含自身共价磷酸化的催化机制,并且可以使用各种小分子磷酸供体来催化来自伴侣传感器激酶的磷酸转移或自身磷酸化。虽然响应调节蛋白的自身磷酸化在生理上是相关的,并且是一种强大的实验工具,但对于不同的响应调节蛋白和磷酸供体,自身磷酸化反应的动力学决定因素以及这些决定因素如何变化在很大程度上是未知的。我们描述了模型响应调节蛋白大肠杆菌 CheY 的 21 种变体的自身磷酸化动力学,这些变体主要在非保守活性位点位置 D + 2(CheY 残基 59)和 T + 2(CheY 残基 89)处发生取代,这两个残基分别位于保守残基 D57 和 T87 的 C 末端。总体而言,CheY 变体与磷酰胺、乙酰磷酸或单磷酸咪唑反应的速率常数 (kphos/KS) 变化范围超过 10(5)倍,与野生型 CheY 相比,绝大多数速率都增强了。尽管磷酸供体的偏好有很大差异,但几乎所有的 CheY 变体与磷酰胺的反应速度都比乙酰磷酸快。D + 2 和 T + 2 侧链增加的正电荷与更快的反应速率之间的相关性表明静电相互作用是动力学决定因素。此外,速率常数对离子强度的敏感性表明,长程和局部静电相互作用都会影响自身磷酸化动力学。D + 2 和 T + 2 侧链的非极性表面积增加也与自身磷酸化速率的增强相关,特别是与磷酰胺和单磷酸咪唑的反应。计算机对接表明,对于 T + 2 位置为酪氨酸的 CheY 变体,其单磷酸咪唑的自身磷酸化速率大大加快,这可能反映了从传感器激酶组氨酸磷酸转移的结构模拟。