Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States.
Anal Chem. 2013 Apr 2;85(7):3599-605. doi: 10.1021/ac3033849. Epub 2013 Mar 21.
Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction-limited spatial resolution can be achieved when an apertured, single-pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multipixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multipixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of 2, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real-time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time.
在红外(IR)光谱区域进行微光谱成像是一种能够在微观尺度上检查空间分辨化学组成的方法。十多年前,已经证明了当孔径的单像素 IR 显微镜与同步辐射光源的高亮度耦合时,可以实现衍射极限的空间分辨率。如今,许多 IR 显微镜都配备了多像素焦平面阵列(FPA)探测器,这大大缩短了对大面积成像的采集时间。最近,在有效地将同步辐射 IR 光束线耦合到多像素探测器方面已经取得了进展,但它们利用了昂贵且高度定制的光学方案。在这里,我们展示了一种简单的光学配置的开发和应用,该配置可以在大多数现有的同步辐射 IR 光束线上实现,以实现具有衍射极限空间分辨率的全场 IR 成像。具体来说,从弯曲磁铁中提取同步加速器辐射扇形,并将其分为四束,在样品上进行组合,从而可以填充 FPA 的大部分区域。通过这种光学配置,我们甚至可以在最短的波长下,通过超过两倍的采样来对图像进行过采样,从而可以通过反卷积算法进行图像恢复。该仪器具有高的化学灵敏度、快速的采集时间和优异的信噪比特性。该设置的独特特性使得首次能够以衍射极限的空间分辨率实时研究不均匀的化学动力学。