新型生物光谱成像显示,在大鼠全脑缺血诱导海马CA1锥体神经元死亡之前,蛋白质稳态和硫醇氧化还原受到干扰,伴有蛋白质聚集。

Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

作者信息

Hackett Mark J, Smith Shari E, Caine Sally, Nichol Helen, George Graham N, Pickering Ingrid J, Paterson Phyllis G

机构信息

Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.

College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada.

出版信息

Free Radic Biol Med. 2015 Dec;89:806-18. doi: 10.1016/j.freeradbiomed.2015.08.029. Epub 2015 Oct 9.

Abstract

Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein occur in the same CA1 pyramidal neurons 1 day after global ischemia. Further, analysis of serial tissue sections using X-ray absorption spectroscopy at the sulfur K-edge has revealed that CA1 pyramidal neurons have increased disulfide levels, a direct indicator of oxidative stress, at this time point. These changes at 1 day after ischemia precede a massive increase in aggregated protein and disulfide levels concomitant with loss of neuron integrity 2 days after ischemia. Therefore, this study has provided direct support for a correlative mechanistic link in both spatial and temporal domains between oxidative stress, protein aggregation and altered protein homeostasis prior to irreparable neuron damage following global ischemia.

摘要

心脏骤停和心脏手术导致的全脑缺血可导致永久性脑损伤和智力障碍。全脑缺血的一个临床特征是延迟性神经退行性变,尤其是在海马体的CA1亚区。不幸的是,其生化机制尚未完全阐明,这阻碍了当前疗法(即治疗性低温)的优化或新疗法的开发。阐明导致神经退行性变的机制以及了解这些机制如何受到潜在疗法影响的一个主要限制是无法将生化标志物与单个神经元形态的改变联系起来。尽管免疫细胞化学能够在亚细胞水平对多种生化标志物进行成像,但它不是一种直接的化学成像技术,需要成功地“标记”所需的分析物。因此,重要的生化参数,尤其是那些由生物分子氧化损伤引起的参数,如聚集蛋白水平,在细胞或亚细胞水平上进行成像一直非常困难。据推测,缺血和再灌注期间产生的活性氧(ROS)促进蛋白质聚集,损害神经元蛋白质稳态(即减少蛋白质合成),进而促进神经退行性变。尽管该理论有间接证据,但由于缺乏合适的成像方法,在同一神经元内对形态和ROS诱导的生化损伤(如蛋白质聚集增加和蛋白质合成减少)进行直接测量尚不存在。我们的实验方法将常规组织学与同一神经元的新型宽场同步辐射傅里叶变换红外成像(FTIRI)相结合,在脑组织切片中进行离体实验。结果首次表明,全脑缺血1天后,同一CA1锥体神经元中蛋白质聚集增加且总蛋白水平降低。此外,在硫K边使用X射线吸收光谱对连续组织切片进行分析发现,此时CA1锥体神经元的二硫键水平升高,这是氧化应激的直接指标。缺血1天后的这些变化先于缺血2天后聚集蛋白和二硫键水平的大量增加以及神经元完整性的丧失。因此,本研究为全脑缺血后不可修复的神经元损伤之前氧化应激、蛋白质聚集和蛋白质稳态改变之间在空间和时间域上的相关机制联系提供了直接支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索