1 Respiratory Product Development, Merck Research Labs , Summit, NJ 07901.
J Aerosol Med Pulm Drug Deliv. 2014 Feb;27(1):21-9. doi: 10.1089/jamp.2012.1011. Epub 2013 Mar 5.
Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature.
The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments.
We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results.
We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.
先前的研究表明,鼻内喷雾的体外测试无法预测体内的沉积、药代动力学或药效动力学。这一挑战使得评估新技术输送至治疗有益的后鼻腔所达到的沉积变得困难。在这项研究中,我们确定了使用分区鼻模型来预测沉积的最佳参数。我们的研究使用模型悬浮液和实验设计来产生可重复的沉积结果,这些结果模拟了文献中鼻悬浮液的鼻腔沉积模式。
这个由七个部分(喷嘴定位器、鼻腔前庭、前鼻甲、后鼻甲、嗅区、鼻咽部和喉咙过滤器)组成的尼龙鼻模型是基于健康人类的计算机断层扫描图像。它被涂有甘油/Brij-35 溶液以模拟黏液。在组装和定向后,施加气流并喷洒含有模型悬浮液的鼻喷雾。在拆卸模型后,通过 HPLC 测定每个部分中药物的沉积量。最佳设置的成功标准基于文献中的九项体内研究。实验设计包括探索性和半因子筛选实验,以确定影响沉积的变量(角度、气流和气流时间)、优化实验,然后是重复性和再现性实验。
我们发现,启动后的倾斜角度和气流时间对沉积的影响最大。优化后的设置是流速为 16 L/min,启动后气流时间为 12 秒,倾斜角度为 23°,喷嘴角度为 0°,启动速度为 5 cm/sec。模型或操作人员均不会导致结果发生显著变化。
我们确定了模型参数,以产生类似于文献中鼻喷雾剂的结果。结果是可重复的,不受操作人员或模型的影响。这些鼻喷雾参数可用于评估新设备或制剂的沉积。对于使用放射性标记制剂的人体沉积研究,这个模型可以证明放射性标记的沉积代表药物的沉积。我们的方法也可用于优化其他模型的设置。