Suppr超能文献

LoopWeaver:通过对已验证蛋白质进行加权缩放来进行环建模。

LoopWeaver: loop modeling by the weighted scaling of verified proteins.

作者信息

Holtby Daniel, Li Shuai Cheng, Li Ming

机构信息

David R. Chariton School of Computer Science, University of Waterloo, Waterloo, Canada.

出版信息

J Comput Biol. 2013 Mar;20(3):212-23. doi: 10.1089/cmb.2012.0078.

Abstract

Modeling loops is a necessary step in protein structure determination, even with experimental nuclear magnetic resonance (NMR) data, it is widely known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with subangstrom accuracy when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better, clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper, before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42 Å RMSD on average for 206 length 6 loops, 0.64 Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98 Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA to run for over a week, it approaches, but does not surpass, our accuracy.

摘要

对环进行建模是蛋白质结构测定中的必要步骤,即便有实验核磁共振(NMR)数据,众所周知这一过程仍很困难。与从头计算技术相比,数据库技术的优势在于能产生更高比例具有亚埃级精度的预测结果,但劣势在于也会产生更高比例的冲突或高度不准确的预测结果。我们引入了LoopWeaver,这是一种数据库方法,它使用多维缩放来实现从蛋白质结构数据库中获取的环的更好的、无冲突放置。这使我们能够保持上述优势,同时避免劣势。测试结果表明,在优化之前,我们取得的结果明显优于所有其他方法,包括Modeler、Loopy、SuperLooper和Rapper。经过优化后,我们的结果(LoopWeaver和Loopy共识)优于ROSETTA,对于206个长度为6的环,平均RMSD为0.42 Å,对于168个长度为7的环,局部RMSD为0.64 Å,对于117个长度为8的环,RMSD为0.81 Å,对于长度为9的环,RMSD为0.98 Å,而在相同的平均时间限制(3小时)下,ROSETTA的相应结果分别为0.55、0.79、1.16、1.42。当我们允许ROSETTA运行超过一周时,它接近但未超过我们的精度。

相似文献

6
Loopholes and missing links in protein modeling.蛋白质建模中的漏洞与缺失环节。
Protein Sci. 2007 Sep;16(9):1999-2012. doi: 10.1110/ps.072887807. Epub 2007 Jul 27.

引用本文的文献

6
Antibody H3 Structure Prediction.抗体H3结构预测。
Comput Struct Biotechnol J. 2017 Feb 1;15:222-231. doi: 10.1016/j.csbj.2017.01.010. eCollection 2017.
7
LoopIng: a template-based tool for predicting the structure of protein loops.LoopIng:一种基于模板预测蛋白质环结构的工具。
Bioinformatics. 2015 Dec 1;31(23):3767-72. doi: 10.1093/bioinformatics/btv438. Epub 2015 Aug 6.
9
The origin of CDR H3 structural diversity.互补决定区H3结构多样性的起源。
Structure. 2015 Feb 3;23(2):302-11. doi: 10.1016/j.str.2014.11.010. Epub 2015 Jan 8.

本文引用的文献

6
Protein-protein docking with backbone flexibility.考虑主链柔性的蛋白质-蛋白质对接
J Mol Biol. 2007 Oct 19;373(2):503-19. doi: 10.1016/j.jmb.2007.07.050. Epub 2007 Aug 2.
7
Loop modeling: Sampling, filtering, and scoring.环建模:采样、滤波与评分。
Proteins. 2008 Feb 15;70(3):834-43. doi: 10.1002/prot.21612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验