Suppr超能文献

重新审视 FREAD:使用数据库搜索算法进行准确的环结构预测。

FREAD revisited: Accurate loop structure prediction using a database search algorithm.

机构信息

Department of Statistics, Oxford University, United Kingdom.

出版信息

Proteins. 2010 May 1;78(6):1431-40. doi: 10.1002/prot.22658.

Abstract

Loops are the most variable regions of protein structure and are, in general, the least accurately predicted. Their prediction has been approached in two ways, ab initio and database search. In recent years, it has been thought that ab initio methods are more powerful. In light of the continued rapid expansion in the number of known protein structures, we have re-evaluated FREAD, a database search method and demonstrate that the power of database search methods may have been underestimated. We found that sequence similarity as quantified by environment specific substitution scores can be used to significantly improve prediction. In fact, FREAD performs appreciably better for an identifiable subset of loops (two thirds of shorter loops and half of the longer loops tested) than the ab initio methods of MODELLER, PLOP, and RAPPER. Within this subset, FREAD's predictive ability is length independent, in general, producing results within 2A RMSD, compared to an average of over 10A for loop length 20 for any of the other tested methods. We also benchmarked the prediction protocols on a set of 212 loops from the model structures in CASP 7 and 8. An extended version of FREAD is able to make predictions for 127 of these, it gives the best prediction of the methods tested in 61 of these cases. In examining FREAD's ability to predict in the model environment, we found that whole structure quality did not affect the quality of loop predictions.

摘要

环是蛋白质结构中最具变异性的区域,通常也是预测准确度最低的区域。人们已经采用两种方法来预测它们,即从头预测和数据库搜索。近年来,人们认为从头预测方法更强大。鉴于已知蛋白质结构数量的持续快速增长,我们重新评估了数据库搜索方法 FREAD,并证明数据库搜索方法的威力可能被低估了。我们发现,通过环境特定替代分数量化的序列相似性可以显著提高预测能力。事实上,FREAD 在可识别的环子集(测试的较短环的三分之二和较长环的一半)中的表现明显优于 MODELLER、PLOP 和 RAPPER 等从头预测方法。在这个子集中,FREAD 的预测能力通常与长度无关,对于任何其他测试方法,其环长度为 20 的预测结果平均在 10A 以上,而 FREAD 的预测结果则在 2A RMSD 以内。我们还在 CASP 7 和 8 的模型结构中的 212 个环的集合上对预测协议进行了基准测试。FREAD 的扩展版本能够对其中的 127 个进行预测,在这些情况下,它在 61 个案例中给出了测试方法中最好的预测。在检查 FREAD 在模型环境中的预测能力时,我们发现整体结构质量不会影响环预测的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验