Suppr超能文献

在广义线性模型中检验遗传标记集与环境之间的相互作用。

Test for interactions between a genetic marker set and environment in generalized linear models.

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.

出版信息

Biostatistics. 2013 Sep;14(4):667-81. doi: 10.1093/biostatistics/kxt006. Epub 2013 Mar 5.

Abstract

We consider in this paper testing for interactions between a genetic marker set and an environmental variable. A common practice in studying gene-environment (GE) interactions is to analyze one single-nucleotide polymorphism (SNP) at a time. It is of significant interest to analyze SNPs in a biologically defined set simultaneously, e.g. gene or pathway. In this paper, we first show that if the main effects of multiple SNPs in a set are associated with a disease/trait, the classical single SNP-GE interaction analysis can be biased. We derive the asymptotic bias and study the conditions under which the classical single SNP-GE interaction analysis is unbiased. We further show that, the simple minimum p-value-based SNP-set GE analysis, can be biased and have an inflated Type 1 error rate. To overcome these difficulties, we propose a computationally efficient and powerful gene-environment set association test (GESAT) in generalized linear models. Our method tests for SNP-set by environment interactions using a variance component test, and estimates the main SNP effects under the null hypothesis using ridge regression. We evaluate the performance of GESAT using simulation studies, and apply GESAT to data from the Harvard lung cancer genetic study to investigate GE interactions between the SNPs in the 15q24-25.1 region and smoking on lung cancer risk.

摘要

我们在本文中考虑了检验一组遗传标记与环境变量之间的相互作用。在研究基因-环境(GE)相互作用时,一种常见的做法是一次分析一个单核苷酸多态性(SNP)。同时分析生物定义的一组 SNP(例如基因或途径)具有重要意义。在本文中,我们首先表明,如果一组中多个 SNP 的主要效应与疾病/特征相关,则经典的单 SNP-GE 相互作用分析可能存在偏差。我们推导出渐近偏差,并研究了经典单 SNP-GE 相互作用分析无偏的条件。我们进一步表明,简单的基于最小 p 值的 SNP 集 GE 分析可能存在偏差,并具有膨胀的Ⅰ型错误率。为了克服这些困难,我们在广义线性模型中提出了一种计算效率高且功能强大的基因-环境集关联测试(GESAT)。我们的方法使用方差分量检验来检验 SNP 集与环境的相互作用,并使用岭回归在零假设下估计主要 SNP 效应。我们使用模拟研究评估了 GESAT 的性能,并将 GESAT 应用于哈佛肺癌遗传研究的数据,以研究 15q24-25.1 区域中 SNP 与吸烟对肺癌风险的相互作用。

相似文献

1
Test for interactions between a genetic marker set and environment in generalized linear models.
Biostatistics. 2013 Sep;14(4):667-81. doi: 10.1093/biostatistics/kxt006. Epub 2013 Mar 5.
2
A unified method for rare variant analysis of gene-environment interactions.
Stat Med. 2020 Mar 15;39(6):801-813. doi: 10.1002/sim.8446. Epub 2019 Dec 4.
3
An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.
Int J Environ Res Public Health. 2017 Sep 27;14(10):1134. doi: 10.3390/ijerph14101134.
6
A combination test for detection of gene-environment interaction in cohort studies.
Genet Epidemiol. 2017 Jul;41(5):396-412. doi: 10.1002/gepi.22043. Epub 2017 Mar 31.
7
GEE-based SNP set association test for continuous and discrete traits in family-based association studies.
Genet Epidemiol. 2013 Dec;37(8):778-86. doi: 10.1002/gepi.21763. Epub 2013 Oct 25.
8
Application of the parametric bootstrap for gene-set analysis of gene-environment interactions.
Eur J Hum Genet. 2018 Nov;26(11):1679-1686. doi: 10.1038/s41431-018-0236-x. Epub 2018 Aug 8.

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
3
Gene-environment interactions in human health.
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.
4
A tree-based gene-environment interaction analysis with rare features.
Stat Anal Data Min. 2022 Oct;15(5):648-674. doi: 10.1002/sam.11578. Epub 2022 Mar 1.
6
Type 2 cytokine genes as allergic asthma risk factors after viral bronchiolitis in early childhood.
Front Immunol. 2023 Jan 6;13:1054119. doi: 10.3389/fimmu.2022.1054119. eCollection 2022.
7
Efficient gene-environment interaction testing through bootstrap aggregating.
Sci Rep. 2023 Jan 17;13(1):937. doi: 10.1038/s41598-023-28172-4.
8
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables.
PLoS Genet. 2022 Nov 16;18(11):e1010464. doi: 10.1371/journal.pgen.1010464. eCollection 2022 Nov.
10
Ridge Penalization in High-Dimensional Testing With Applications to Imaging Genetics.
Front Neurosci. 2022 Mar 24;16:836100. doi: 10.3389/fnins.2022.836100. eCollection 2022.

本文引用的文献

1
Powerful cocktail methods for detecting genome-wide gene-environment interaction.
Genet Epidemiol. 2012 Apr;36(3):183-94. doi: 10.1002/gepi.21610.
2
Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction.
Am J Epidemiol. 2012 May 15;175(10):1013-20. doi: 10.1093/aje/kwr467. Epub 2012 Feb 3.
3
Sensitivity analysis for interactions under unmeasured confounding.
Stat Med. 2012 Sep 28;31(22):2552-64. doi: 10.1002/sim.4354. Epub 2011 Oct 4.
5
Sample size requirements to detect gene-environment interactions in genome-wide association studies.
Genet Epidemiol. 2011 Apr;35(3):201-10. doi: 10.1002/gepi.20569. Epub 2011 Feb 9.
6
Powerful SNP-set analysis for case-control genome-wide association studies.
Am J Hum Genet. 2010 Jun 11;86(6):929-42. doi: 10.1016/j.ajhg.2010.05.002.
8
Genome-wide meta-analyses identify multiple loci associated with smoking behavior.
Nat Genet. 2010 May;42(5):441-7. doi: 10.1038/ng.571. Epub 2010 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验