Suppr超能文献

高维基因-环境相互作用分析

High-Dimensional Gene-Environment Interaction Analysis.

作者信息

Wu Mengyun, Li Yingmeng, Ma Shuangge

机构信息

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China.

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.

出版信息

Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.

Abstract

Beyond the main genetic and environmental effects, gene-environment (G-E) interactions have been demonstrated to significantly contribute to the development and progression of complex diseases. Published analyses of G-E interactions have primarily used a supervised framework to model both low-dimensional environmental factors and high-dimensional genetic factors in relation to disease outcomes. In this article, we aim to provide a selective review of methodological developments in G-E interaction analysis from a statistical perspective. The three main families of techniques are hypothesis testing, variable selection, and dimension reduction, which lead to three general frameworks: testing-based, estimation-based, and prediction-based. Linear- and nonlinear-effects analysis, fixed- and random-effects analysis, marginal and joint analysis, and Bayesian and frequentist analysis are reviewed to facilitate the conduct of interaction analysis in a wide range of situations with various assumptions and objectives. Statistical properties, computations, applications, and future directions are also discussed.

摘要

除了主要的遗传和环境影响外,基因-环境(G-E)相互作用已被证明对复杂疾病的发生和发展有显著贡献。已发表的G-E相互作用分析主要使用监督框架来对与疾病结局相关的低维环境因素和高维遗传因素进行建模。在本文中,我们旨在从统计学角度对G-E相互作用分析方法的发展进行选择性综述。主要的三类技术是假设检验、变量选择和降维,这导致了三个通用框架:基于检验的、基于估计的和基于预测的。本文回顾了线性和非线性效应分析、固定和随机效应分析、边际和联合分析以及贝叶斯和频率论分析,以促进在具有各种假设和目标的广泛情况下进行相互作用分析。还讨论了统计特性、计算方法、应用以及未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cef0/12383825/3665a4c0ab44/nihms-2088538-f0001.jpg

相似文献

1
High-Dimensional Gene-Environment Interaction Analysis.
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
4
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
10
Progressive resistive exercise interventions for adults living with HIV/AIDS.
Cochrane Database Syst Rev. 2004 Oct 18(4):CD004248. doi: 10.1002/14651858.CD004248.pub2.

本文引用的文献

1
The Bayesian Regularized Quantile Varying Coefficient Model.
Comput Stat Data Anal. 2023 Nov;187. doi: 10.1016/j.csda.2023.107808. Epub 2023 Jun 23.
2
Statistical methods for gene-environment interaction analysis.
Wiley Interdiscip Rev Comput Stat. 2024 Jan-Feb;16(1). doi: 10.1002/wics.1635. Epub 2023 Oct 5.
3
Hierarchical False Discovery Rate Control for High-dimensional Survival Analysis with Interactions.
Comput Stat Data Anal. 2024 Apr;192. doi: 10.1016/j.csda.2023.107906. Epub 2023 Dec 5.
4
Pathological imaging-assisted cancer gene-environment interaction analysis.
Biometrics. 2023 Dec;79(4):3883-3894. doi: 10.1111/biom.13873. Epub 2023 May 17.
5
Bi-level structured functional analysis for genome-wide association studies.
Biometrics. 2023 Dec;79(4):3359-3373. doi: 10.1111/biom.13871. Epub 2023 May 7.
6
Gene-environment interaction analysis via deep learning.
Genet Epidemiol. 2023 Apr;47(3):261-286. doi: 10.1002/gepi.22518. Epub 2023 Feb 19.
7
A scalable hierarchical lasso for gene-environment interactions.
J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.
8
A Varying Coefficient Model to Jointly Test Genetic and Gene-Environment Interaction Effects.
Behav Genet. 2023 Jul;53(4):374-382. doi: 10.1007/s10519-022-10131-w. Epub 2023 Jan 9.
9
Improved two-step testing of genome-wide gene-environment interactions.
Genet Epidemiol. 2023 Mar;47(2):152-166. doi: 10.1002/gepi.22509. Epub 2022 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验