Suppr超能文献

空果皮 5 编码一个五肽重复蛋白,该蛋白对于玉米线粒体 RNA 编辑和种子发育是必需的。

Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize.

机构信息

State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.

出版信息

Plant Cell. 2013 Mar;25(3):868-83. doi: 10.1105/tpc.112.106781. Epub 2013 Mar 5.

Abstract

In flowering plants, RNA editing is a posttranscriptional mechanism that converts specific cytidines to uridines in both mitochondrial and plastidial transcripts, altering the information encoded by these genes. Here, we report the molecular characterization of the empty pericarp5 (emp5) mutants in maize (Zea mays). Null mutation of Emp5 results in abortion of embryo and endosperm development at early stages. Emp5 encodes a mitochondrion-targeted DYW subgroup pentatricopeptide repeat (PPR) protein. Analysis of the mitochondrial transcripts revealed that loss of the EMP5 function abolishes the C-to-U editing of ribosomal protein L16 at the rpl16-458 site (100% edited in the wild type), decreases the editing at nine sites in NADH dehydrogenase9 (nad9), cytochrome c oxidase3 (cox3), and ribosomal protein S12 (rps12), and surprisingly increases the editing at five sites of ATP synthase F0 subunit a (atp6), apocytochrome b (cob), nad1, and rpl16. Mutant EMP5-4 lacking the E+ and DYW domains still retains the substrate specificity and editing function, only at reduced efficiency. This suggests that the E+ and DYW domains of EMP5 are not essential to the EMP5 editing function but are necessary for efficiency. Analysis of the ortholog in rice (Oryza sativa) indicates that rice EMP5 has a conserved function in C-to-U editing of the rice mitochondrial rpl16-458 site. EMP5 knockdown expression in transgenics resulted in slow growth and defective seeds. These results demonstrate that Emp5 encodes a PPR-DYW protein that is required for the editing of multiple transcripts in mitochondria, and the editing events, particularly the C-to-U editing at the rpl16-458 site, are critical to the mitochondrial functions and, hence, to seed development in maize.

摘要

在开花植物中,RNA 编辑是一种在后转录水平上发生的机制,它可以将特定的胞嘧啶转化为线粒体和质体转录本中的尿嘧啶,从而改变这些基因编码的信息。在这里,我们报告了玉米(Zea mays)中空果皮 5(emp5)突变体的分子特征。Emp5 的功能缺失导致胚胎和胚乳在早期阶段的发育中止。Emp5 编码一个定位于线粒体的 DYW 亚组 pentatricopeptide repeat(PPR)蛋白。对线粒体转录本的分析表明,EMP5 功能的丧失会使核糖体蛋白 L16 在 rpl16-458 位点的 C 到 U 编辑(野生型中编辑率为 100%)失活,降低 NADH 脱氢酶 9(nad9)、细胞色素 c 氧化酶 3(cox3)和核糖体蛋白 S12(rps12)中九个位点的编辑率,令人惊讶的是,增加了 ATP 合酶 F0 亚基 a(atp6)、细胞色素 b(cob)、nad1 和 rpl16 中五个位点的编辑率。缺失 E+和 DYW 结构域的突变体 EMP5-4 仍然保留底物特异性和编辑功能,只是效率降低。这表明 EMP5 的 E+和 DYW 结构域对于 EMP5 的编辑功能不是必需的,但对于效率是必需的。对水稻(Oryza sativa)同源物的分析表明,水稻 EMP5 在水稻线粒体 rpl16-458 位点的 C 到 U 编辑中具有保守功能。在转基因植物中转录后敲低 EMP5 的表达会导致生长缓慢和种子缺陷。这些结果表明,Emp5 编码一个 PPR-DYW 蛋白,该蛋白需要在线粒体中编辑多个转录本,并且编辑事件,特别是 rpl16-458 位点的 C 到 U 编辑,对于线粒体功能至关重要,因此对于玉米种子的发育也至关重要。

相似文献

8
EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize.
New Phytol. 2019 Jan;221(2):896-907. doi: 10.1111/nph.15425. Epub 2018 Aug 31.
9
DEK48 Is Required for RNA Editing at Multiple Mitochondrial Sites and Seed Development in Maize.
Int J Mol Sci. 2022 Mar 12;23(6):3064. doi: 10.3390/ijms23063064.

引用本文的文献

2
Seeing the unseen in characterizing RNA editome during rice endosperm development.
Commun Biol. 2024 Oct 13;7(1):1314. doi: 10.1038/s42003-024-07032-5.
4
Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( L.).
Plants (Basel). 2024 Aug 3;13(15):2154. doi: 10.3390/plants13152154.
5
Genome-wide association study for yield-related traits in faba bean ( L.).
Front Plant Sci. 2024 Mar 13;15:1328690. doi: 10.3389/fpls.2024.1328690. eCollection 2024.
6
The complete mitochondrial genome of , insights into its genomic structure and RNA editing sites.
Front Plant Sci. 2024 Mar 6;15:1362045. doi: 10.3389/fpls.2024.1362045. eCollection 2024.
7
Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids.
Plant Commun. 2024 May 13;5(5):100836. doi: 10.1016/j.xplc.2024.100836. Epub 2024 Feb 7.
8
Prognostic analysis and risk assessment based on RNA editing in hepatocellular carcinoma.
J Appl Genet. 2024 Sep;65(3):519-530. doi: 10.1007/s13353-023-00819-y. Epub 2024 Jan 13.
9
GWAS and Meta-QTL Analysis of Yield-Related Ear Traits in Maize.
Plants (Basel). 2023 Nov 8;12(22):3806. doi: 10.3390/plants12223806.
10
Assembly and comparative analysis of the complete mitochondrial genome of Viburnum chinshanense.
BMC Plant Biol. 2023 Oct 11;23(1):487. doi: 10.1186/s12870-023-04493-4.

本文引用的文献

1
Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids.
Plant Cell. 2012 Sep;24(9):3684-94. doi: 10.1105/tpc.112.099507. Epub 2012 Sep 21.
2
A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins.
PLoS Genet. 2012;8(8):e1002910. doi: 10.1371/journal.pgen.1002910. Epub 2012 Aug 16.
4
RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61. doi: 10.1073/pnas.1121465109. Epub 2012 May 7.
5
Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9. doi: 10.1073/pnas.1202452109. Epub 2012 Mar 12.
6
Identification of an active new mutator transposable element in maize.
G3 (Bethesda). 2011 Sep;1(4):293-302. doi: 10.1534/g3.111.000398. Epub 2011 Sep 1.
10
To thy proteins be true: RNA editing in plants.
Plant Physiol. 2011 Jun;156(2):453-4. doi: 10.1104/pp.111.900412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验