Department of Chemistry, University of Washington, Campus Box 351700 Seattle, Washington 98195-1700, USA.
J Am Chem Soc. 2013 Apr 17;135(15):5631-40. doi: 10.1021/ja311166u. Epub 2013 Apr 3.
Transition-metal peroxos have been implicated as key intermediates in a variety of critical biological processes involving O2. Because of their highly reactive nature, very few metal-peroxos have been characterized. The dioxygen chemistry of manganese remains largely unexplored despite the proposed involvement of a Mn-peroxo, either as a precursor to, or derived from, O2, in both photosynthetic H2O oxidation and DNA biosynthesis. These are arguably two of the most fundamental processes of life. Neither of these biological intermediates has been observed. Herein we describe the dioxygen chemistry of coordinatively unsaturated [Mn(II)(S(Me2)N4(6-Me-DPEN))] (+) (1), and the characterization of intermediates formed en route to a binuclear mono-oxo-bridged Mn(III) product {[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(μ-O)}(2+) (2), the oxo atom of which is derived from (18)O2. At low-temperatures, a dioxygen intermediate, Mn(S(Me2)N4(6-Me-DPEN))(O2) (4), is observed (by stopped-flow) to rapidly and irreversibly form in this reaction (k1(-10 °C) = 3780 ± 180 M(-1) s(-1), ΔH1(++) = 26.4 ± 1.7 kJ mol(-1), ΔS1(++) = -75.6 ± 6.8 J mol(-1) K(-1)) and then convert more slowly (k2(-10 °C) = 417 ± 3.2 M(-1) s(-1), ΔH2(++) = 47.1 ± 1.4 kJ mol(-1), ΔS2(++) = -15.0 ± 5.7 J mol(-1) K(-1)) to a species 3 with isotopically sensitive stretches at νO-O(Δ(18)O) = 819(47) cm(-1), kO-O = 3.02 mdyn/Å, and νMn-O(Δ(18)O) = 611(25) cm(-1) consistent with a peroxo. Intermediate 3 releases approximately 0.5 equiv of H2O2 per Mn ion upon protonation, and the rate of conversion of 4 to 3 is dependent on [Mn(II)] concentration, consistent with a binuclear Mn(O2(2-)) Mn peroxo. This was verified by X-ray crystallography, where the peroxo of {[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(trans-μ-1,2-O2)}(2+) (3) is shown to be bridging between two Mn(III) ions in an end-on trans-μ-1,2-fashion. This represents the first characterized example of a binuclear Mn(III)-peroxo, and a rare case in which more than one intermediate is observed en route to a binuclear μ-oxo-bridged product derived from O2. Vibrational and metrical parameters for binuclear Mn-peroxo 3 are compared with those of related binuclear Fe- and Cu-peroxo compounds.
过渡金属过氧化物被认为是涉及氧气的各种关键生物过程中的关键中间体。由于其高度反应性,很少有金属过氧化物被描述。尽管锰过氧化物可能作为 O2 的前体或衍生体,参与光合作用 H2O 氧化和 DNA 生物合成,但锰的氧气化学性质在很大程度上仍未得到探索。这两种反应可以说是生命中最重要的两种反应。这两种生物中间体都没有被观察到。本文描述了配位不饱和Mn(II)(S(Me2)N4(6-Me-DPEN))(1)的氧气化学性质,以及形成双核单氧桥接 Mn(III)产物{[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(μ-O)}(2+)的中间体的特征,其中的氧原子来自(18)O2。在低温下,观察到在该反应中(通过停流)迅速且不可逆地形成氧的中间产物[Mn(S(Me2)N4(6-Me-DPEN))(O2)]+(4)(k1(-10 °C) = 3780 ± 180 M(-1) s(-1),ΔH1(++) = 26.4 ± 1.7 kJ mol(-1),ΔS1(++) = -75.6 ± 6.8 J mol(-1) K(-1)),然后更缓慢地转化(k2(-10 °C) = 417 ± 3.2 M(-1) s(-1),ΔH2(++) = 47.1 ± 1.4 kJ mol(-1),ΔS2(++) = -15.0 ± 5.7 J mol(-1) K(-1)),形成具有νO-O(Δ(18)O)= 819(47)cm(-1),kO-O = 3.02 mdyn/Å,νMn-O(Δ(18)O)= 611(25)cm(-1)的物种 3,与过氧化物一致。中间体 3 每摩尔 Mn 离子释放约 0.5 当量的 H2O2,并且 4 到 3 的转化速率取决于[Mn(II)]浓度,这与双核 Mn(O2(2-)) Mn 过氧化物一致。这通过 X 射线晶体学得到了验证,其中{[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(trans-μ-1,2-O2)}(2+)(3)的过氧化物被证明以顺式-μ-1,2-方式桥接两个 Mn(III)离子之间。这代表了第一个被描述的双核 Mn(III)-过氧化物的例子,也是观察到从 O2 衍生出双核μ-氧桥接产物的过程中观察到不止一种中间体的罕见情况。双核 Mn-过氧化物 3 的振动和度量参数与相关的双核 Fe-和 Cu-过氧化物化合物进行了比较。