Suppr超能文献

分子动力学模拟分析半融合膜缺陷和孔倾向。

Molecular dynamics simulation analysis of membrane defects and pore propensity of hemifusion diaphragms.

机构信息

Teikyo University School of Medical Technology, Itabashi, Tokyo, Japan.

出版信息

Biophys J. 2013 Mar 5;104(5):1038-48. doi: 10.1016/j.bpj.2013.01.022.

Abstract

Membrane fusion often exhibits slow dynamics in electrophysiological experiments, involving prespike foot and fusion pore-flickering, but the structural basis of such phenomena remains unclear. Hemifusion intermediates have been implicated in the early phase of membrane fusion. To elucidate the dynamics of formation of membrane defects and pores within the hemifusion diaphragm (HD), atomistic and coarse-grained models of hemifusion intermediates were constructed using dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine membranes. The work necessary to displace a lipid molecule to the hydrophobic core of the bilayer was measured. For a lipid within the HD with radius of 4 nm, the work was ∼80 kJ/mol, similar to that in a planar bilayer. The work was much less (∼40 kJ/mol) when the HD was surrounded by a steep stalk, i.e., stalk wings forming a large angle at the junction of three bilayers. In the latter case, the lipid displacement engendered formation of a pore contacting the HD rim. The work was similarly small (40 kJ/mol) for a small HD of 1.5 nm radius, where a pore formed and grew rapidly, quickly generating a toroidal structure (<40 ns). Combining the steep stalk and the small HD decreased the work further, although quantitative analysis was difficult because the latter system was not in a stable equilibrium state. Results suggest that fine tuning of fusion dynamics requires strict control of the HD size and the angle between the expanded stalk and HD. In additional free simulations, the steep stalk facilitated widening of a preformed pore contacting the HD rim.

摘要

膜融合在电生理学实验中常表现出缓慢的动力学,涉及预融合足和融合孔闪烁,但这种现象的结构基础仍不清楚。半融合中间体被牵涉到膜融合的早期阶段。为了阐明半融合隔膜(HD)内膜缺陷和孔形成的动力学,使用二棕榈酰磷脂酰胆碱或二油酰磷脂酰胆碱膜构建了半融合中间体的原子和粗粒度模型。测量了将脂质分子置换到双层疏水区所需的功。对于半径为 4nm 的 HD 内的脂质,功约为 80kJ/mol,与平面双层中的功相似。当 HD 被陡峭的茎包围时,功要小得多(约 40kJ/mol),即茎翼在三层膜的连接处形成大角度。在后一种情况下,脂质置换会导致与 HD 边缘接触的孔的形成。半径为 1.5nm 的小 HD 的功也相似(40kJ/mol),其中孔形成并迅速生长,很快生成环形结构(<40ns)。尽管由于后者系统未处于稳定平衡状态,定量分析很困难,但结合陡峭的茎和小的 HD 进一步降低了功。结果表明,融合动力学的精细调节需要严格控制 HD 的大小和扩展茎与 HD 之间的角度。在额外的自由模拟中,陡峭的茎促进了与 HD 边缘接触的预先形成的孔的扩大。

相似文献

1
2
Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.
Biophys J. 2002 Nov;83(5):2634-51. doi: 10.1016/S0006-3495(02)75274-0.
3
Lipid flip-flop vs. lateral diffusion in the relaxation of hemifusion diaphragms.
Biochim Biophys Acta Biomembr. 2018 Jul;1860(7):1452-1459. doi: 10.1016/j.bbamem.2018.04.007. Epub 2018 Apr 22.
4
Free energy landscape of rim-pore expansion in membrane fusion.
Biophys J. 2014 Nov 18;107(10):2287-95. doi: 10.1016/j.bpj.2014.08.022.
5
Myomerger Induces Membrane Hemifusion and Regulates Fusion Pore Expansion.
Biochemistry. 2024 Mar 19;63(6):815-826. doi: 10.1021/acs.biochem.3c00682. Epub 2024 Feb 13.
6
Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.
Biophys J. 2016 Mar 8;110(5):1110-24. doi: 10.1016/j.bpj.2016.01.013.
7
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
8
Calculation of free energy barriers to the fusion of small vesicles.
Biophys J. 2008 Mar 1;94(5):1699-706. doi: 10.1529/biophysj.107.119511. Epub 2007 Nov 16.
9
Multi-step formation of a hemifusion diaphragm for vesicle fusion revealed by all-atom molecular dynamics simulations.
Biochim Biophys Acta. 2014 Jun;1838(6):1529-35. doi: 10.1016/j.bbamem.2014.01.018. Epub 2014 Jan 24.
10
Initiation and dynamics of hemifusion in lipid bilayers.
Biophys J. 2003 Jul;85(1):381-9. doi: 10.1016/S0006-3495(03)74482-8.

引用本文的文献

1
Transient pores in hemifusion diaphragms.
Biophys J. 2024 Aug 20;123(16):2455-2475. doi: 10.1016/j.bpj.2024.06.009. Epub 2024 Jun 11.
2
How proteins open fusion pores: insights from molecular simulations.
Eur Biophys J. 2021 Mar;50(2):279-293. doi: 10.1007/s00249-020-01484-3. Epub 2020 Dec 19.
3
Sequential Water and Headgroup Merger: Membrane Poration Paths and Energetics from MD Simulations.
Biophys J. 2020 Dec 15;119(12):2418-2430. doi: 10.1016/j.bpj.2020.10.037. Epub 2020 Nov 13.
5
Computational Modeling of Realistic Cell Membranes.
Chem Rev. 2019 May 8;119(9):6184-6226. doi: 10.1021/acs.chemrev.8b00460. Epub 2019 Jan 9.
6
Fate of Liposomes in the Presence of Phospholipase C and D: From Atomic to Supramolecular Lipid Arrangement.
ACS Cent Sci. 2018 Aug 22;4(8):1023-1030. doi: 10.1021/acscentsci.8b00286. Epub 2018 Aug 6.
7
The fusion pore, 60 years after the first cartoon.
FEBS Lett. 2018 Nov;592(21):3542-3562. doi: 10.1002/1873-3468.13160. Epub 2018 Jul 2.
9
Free energy landscape of rim-pore expansion in membrane fusion.
Biophys J. 2014 Nov 18;107(10):2287-95. doi: 10.1016/j.bpj.2014.08.022.
10
Expansion of the fusion stalk and its implication for biological membrane fusion.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11043-8. doi: 10.1073/pnas.1323221111. Epub 2014 Jul 14.

本文引用的文献

1
Tension-induced vesicle fusion: pathways and pore dynamics.
Soft Matter. 2008 May 14;4(6):1208-1214. doi: 10.1039/b801407h.
2
Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining.
J Chem Theory Comput. 2011 Sep 13;7(9):2981-8. doi: 10.1021/ct200291v. Epub 2011 Aug 17.
3
The Martini coarse-grained force field.
Methods Mol Biol. 2013;924:533-65. doi: 10.1007/978-1-62703-017-5_20.
4
Defect-mediated trafficking across cell membranes: insights from in silico modeling.
Chem Rev. 2010 Oct 13;110(10):6077-103. doi: 10.1021/cr1000783.
5
Polarizable water model for the coarse-grained MARTINI force field.
PLoS Comput Biol. 2010 Jun 10;6(6):e1000810. doi: 10.1371/journal.pcbi.1000810.
6
An iris-like mechanism of pore dilation in the CorA magnesium transport system.
Biophys J. 2010 Mar 3;98(5):784-92. doi: 10.1016/j.bpj.2009.11.009.
7
Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution.
Biophys J. 2009 May 20;96(10):4122-31. doi: 10.1016/j.bpj.2009.02.050.
8
The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics.
Biophys J. 2009 Apr 8;96(7):2658-75. doi: 10.1016/j.bpj.2008.11.073.
9
Mechanics of membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):675-83. doi: 10.1038/nsmb.1455.
10
Calculation of free energy barriers to the fusion of small vesicles.
Biophys J. 2008 Mar 1;94(5):1699-706. doi: 10.1529/biophysj.107.119511. Epub 2007 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验