Suppr超能文献

与 GroEL 腔相互作用对蛋白质折叠速率的影响。

Effects of interactions with the GroEL cavity on protein folding rates.

机构信息

University of Cambridge, Department of Chemistry, Cambridge, United Kingdom.

出版信息

Biophys J. 2013 Mar 5;104(5):1098-106. doi: 10.1016/j.bpj.2013.01.034.

Abstract

Encapsulation of proteins in chaperonins is an important mechanism by which the cell prevents the accumulation of misfolded species in the cytosol. However, results from theory and simulation for repulsive cavities appear to be inconsistent with recent experimental results showing, if anything, a slowdown in folding rate for encapsulated Rhodanese. We study the folding of Rhodanese in GroEL, using coarse-grained molecular simulations of the complete system including chaperonin and substrate protein. We find that, by approximating the substrate:GroEL interactions as repulsive, we obtain a strong acceleration in rate of between one and two orders of magnitude; a similar result is obtained by representing the chaperonin as a simple spherical cavity. Remarkably, however, we find that using a carefully parameterized, sequence-based potential to capture specific residue-residue interactions between Rhodanese and the GroEL cavity walls induces a very strong reduction of the folding rates. The effect of the interactions is large enough to completely offset the effects of confinement, such that folding in some cases can be even slower than that of the unconfined protein. The origin of the slowdown appears to be stabilization--relative to repulsive confinement--of the unfolded state through binding to the cavity walls, rather than a reduction of the diffusion coefficient along the folding coordinate.

摘要

蛋白质在伴侣蛋白中的包埋是细胞防止细胞溶质中错误折叠物种积累的重要机制。然而,来自排斥腔理论和模拟的结果似乎与最近的实验结果不一致,实验结果表明,如果有的话,包埋的 Rhodanese 的折叠速率也会减慢。我们使用包括伴侣蛋白和底物蛋白在内的完整系统的粗粒分子模拟来研究 Rhodanese 在 GroEL 中的折叠。我们发现,通过将底物:GroEL 相互作用近似为排斥作用,我们获得了 1 到 2 个数量级的强烈加速;通过将伴侣蛋白表示为简单的球形腔,也可以得到类似的结果。然而,值得注意的是,我们发现,使用经过精心参数化的基于序列的势能来捕获 Rhodanese 与 GroEL 腔壁之间的特定残基-残基相互作用,会导致折叠速率大大降低。相互作用的影响非常大,足以完全抵消限制的影响,使得在某些情况下折叠速度甚至比无约束的蛋白质还要慢。这种减速的原因似乎是通过与腔壁结合,相对于排斥限制,使未折叠状态稳定化,而不是沿折叠坐标降低扩散系数。

相似文献

1
Effects of interactions with the GroEL cavity on protein folding rates.
Biophys J. 2013 Mar 5;104(5):1098-106. doi: 10.1016/j.bpj.2013.01.034.
2
Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
J Biol Chem. 1995 Sep 15;270(37):21517-23. doi: 10.1074/jbc.270.37.21517.
3
Single-molecule spectroscopy of protein folding in a chaperonin cage.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11793-8. doi: 10.1073/pnas.1002356107. Epub 2010 Jun 14.
5
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5342-7. doi: 10.1073/pnas.0700820104. Epub 2007 Mar 19.
6
Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
J Mol Biol. 1999 Apr 2;287(3):627-44. doi: 10.1006/jmbi.1999.2591.
7
The unfolding action of GroEL on a protein substrate.
Biophys J. 2004 Jul;87(1):562-73. doi: 10.1529/biophysj.103.037333.
8
GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
J Biol Chem. 2002 Dec 27;277(52):50621-8. doi: 10.1074/jbc.M209183200. Epub 2002 Oct 10.
9
Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
J Biol Chem. 2004 Jan 9;279(2):1090-9. doi: 10.1074/jbc.M310914200. Epub 2003 Oct 23.
10
Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering.
Structure. 1996 Jan 15;4(1):79-88. doi: 10.1016/s0969-2126(96)00011-1.

引用本文的文献

1
An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography.
Cell Stress Chaperones. 2024 Dec;29(6):764-768. doi: 10.1016/j.cstres.2024.11.003. Epub 2024 Nov 15.
3
Chaperonin facilitates protein folding by avoiding initial polypeptide collapse.
J Biochem. 2018 Nov 1;164(5):369-379. doi: 10.1093/jb/mvy061.
4
From chaperonins to Rubisco assembly and metabolic repair.
Protein Sci. 2017 Dec;26(12):2324-2333. doi: 10.1002/pro.3309. Epub 2017 Oct 10.
5
Chaperone-client interactions: Non-specificity engenders multifunctionality.
J Biol Chem. 2017 Jul 21;292(29):12010-12017. doi: 10.1074/jbc.R117.796862. Epub 2017 Jun 15.
7
How do chaperonins fold protein?
Biophysics (Nagoya-shi). 2015 Apr 1;11:93-102. doi: 10.2142/biophysics.11.93. eCollection 2015.
8
Markov state models of protein misfolding.
J Chem Phys. 2016 Feb 21;144(7):075101. doi: 10.1063/1.4941579.
9
Knotted proteins: A tangled tale of Structural Biology.
Comput Struct Biotechnol J. 2015 Aug 19;13:459-68. doi: 10.1016/j.csbj.2015.08.003. eCollection 2015.
10
Role of denatured-state properties in chaperonin action probed by single-molecule spectroscopy.
Biophys J. 2014 Dec 16;107(12):2891-2902. doi: 10.1016/j.bpj.2014.11.002.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Confinement-induced states in the folding landscape of the Trp-cage miniprotein.
J Phys Chem B. 2012 Oct 4;116(39):11872-80. doi: 10.1021/jp306727r. Epub 2012 Sep 25.
3
Smoothing of the GB1 hairpin folding landscape by interfacial confinement.
Biophys J. 2012 Aug 8;103(3):596-600. doi: 10.1016/j.bpj.2012.07.005.
4
Peptide chain dynamics in light and heavy water: zooming in on internal friction.
J Am Chem Soc. 2012 Apr 11;134(14):6273-9. doi: 10.1021/ja211494h. Epub 2012 Mar 27.
6
Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement.
J Am Chem Soc. 2011 Sep 28;133(38):15157-64. doi: 10.1021/ja2054572. Epub 2011 Sep 2.
7
Diffusion models of protein folding.
Phys Chem Chem Phys. 2011 Oct 14;13(38):16902-11. doi: 10.1039/c1cp21541h. Epub 2011 Aug 15.
8
Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins.
Nature. 2011 May 29;474(7353):662-5. doi: 10.1038/nature10099.
10
Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside.
EMBO J. 2010 Dec 1;29(23):4008-19. doi: 10.1038/emboj.2010.262. Epub 2010 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验