Suppr超能文献

使用粗粒化模拟和机器学习预测蛋白质-蛋白质缔合速率。

Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.

出版信息

Sci Rep. 2017 Apr 18;7:46622. doi: 10.1038/srep46622.

Abstract

Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

摘要

蛋白质-蛋白质相互作用主导着活细胞中的所有主要生物过程。我们开发了一种新的基于蒙特卡罗的模拟算法来研究蛋白质缔合的动力学过程。我们在以前使用的 49 个蛋白质复合物的大型基准测试集中测试了我们的方法。与一组蛋白质复合物的实验结果相比,在基准测试中预测的速率被高估了。我们假设这是由于相互作用蛋白质的界面区域的分子柔性所致。在应用一种机器学习算法时,输入变量同时考虑了结合的构象灵活性和能量因素,我们成功地识别出大多数具有高估缔合速率的蛋白质复合物,并通过交叉验证测试提高了最终预测。然后将该方法应用于新的独立测试集,并得到了与使用训练集获得的相似的预测准确性。人们一直认为扩散受限的蛋白质缔合主要受长程相互作用的控制。我们的结果提供了有力的证据,证明构象柔性在调节蛋白质缔合中也起着重要作用。我们的研究为蛋白质缔合的机制提供了新的见解,并为预测其速率提供了一种计算效率高的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验