Suppr超能文献

随机模型的参数敏感性分析为心脏钙火花提供了深入了解。

Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium sparks.

机构信息

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

Biophys J. 2013 Mar 5;104(5):1142-50. doi: 10.1016/j.bpj.2012.12.055.

Abstract

We present a parameter sensitivity analysis method that is appropriate for stochastic models, and we demonstrate how this analysis generates experimentally testable predictions about the factors that influence local Ca(2+) release in heart cells. The method involves randomly varying all parameters, running a single simulation with each set of parameters, running simulations with hundreds of model variants, then statistically relating the parameters to the simulation results using regression methods. We tested this method on a stochastic model, containing 18 parameters, of the cardiac Ca(2+) spark. Results show that multivariable linear regression can successfully relate parameters to continuous model outputs such as Ca(2+) spark amplitude and duration, and multivariable logistic regression can provide insight into how parameters affect Ca(2+) spark triggering (a probabilistic process that is all-or-none in a single simulation). Benchmark studies demonstrate that this method is less computationally intensive than standard methods by a factor of 16. Importantly, predictions were tested experimentally by measuring Ca(2+) sparks in mice with knockout of the sarcoplasmic reticulum protein triadin. These mice exhibit multiple changes in Ca(2+) release unit structures, and the regression model both accurately predicts changes in Ca(2+) spark amplitude (30% decrease in model, 29% decrease in experiments) and provides an intuitive and quantitative understanding of how much each alteration contributes to the result. This approach is therefore an effective, efficient, and predictive method for analyzing stochastic mathematical models to gain biological insight.

摘要

我们提出了一种适用于随机模型的参数敏感性分析方法,并展示了这种分析如何对影响心肌细胞局部 Ca(2+)释放的因素产生可在实验中检验的预测。该方法涉及随机改变所有参数,对每组参数运行单个模拟,对数百个模型变体进行模拟,然后使用回归方法统计地将参数与模拟结果相关联。我们在包含 18 个参数的心脏 Ca(2+)火花的随机模型上测试了这种方法。结果表明,多元线性回归可以成功地将参数与 Ca(2+)火花幅度和持续时间等连续模型输出相关联,多元逻辑回归可以深入了解参数如何影响 Ca(2+)火花触发(在单个模拟中是全有或全无的概率过程)。基准研究表明,与标准方法相比,该方法的计算强度降低了 16 倍。重要的是,通过测量肌浆网蛋白三联蛋白敲除小鼠的 Ca(2+)火花,对预测进行了实验验证。这些小鼠表现出 Ca(2+)释放单元结构的多种变化,回归模型准确预测了 Ca(2+)火花幅度的变化(模型降低 30%,实验降低 29%),并提供了一种直观且定量的理解,即每个变化对结果的贡献有多大。因此,这种方法是一种有效、高效且具有预测性的分析随机数学模型以获得生物学见解的方法。

相似文献

1
Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium sparks.
Biophys J. 2013 Mar 5;104(5):1142-50. doi: 10.1016/j.bpj.2012.12.055.
2
A mathematical analysis of the generation and termination of calcium sparks.
Biophys J. 2004 Mar;86(3):1293-307. doi: 10.1016/S0006-3495(04)74203-4.
6
Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity.
Cardiovasc Res. 2011 Sep 1;91(4):598-605. doi: 10.1093/cvr/cvr143. Epub 2011 May 24.
7
Factors shaping the confocal image of the calcium spark in cardiac muscle cells.
Biophys J. 1996 Dec;71(6):2942-57. doi: 10.1016/S0006-3495(96)79525-5.
8
Evolution of cardiac calcium waves from stochastic calcium sparks.
Biophys J. 2001 Jan;80(1):103-20. doi: 10.1016/S0006-3495(01)75998-X.
10
Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load.
Am J Physiol Heart Circ Physiol. 2012 Aug 1;303(3):H341-52. doi: 10.1152/ajpheart.00302.2012. Epub 2012 Jun 1.

引用本文的文献

1
Mechanistic modeling of cell viability assays with in silico lineage tracing.
PLoS Comput Biol. 2025 Aug 29;21(8):e1013156. doi: 10.1371/journal.pcbi.1013156. eCollection 2025 Aug.
2
Computational Modeling of Cardiac Electrophysiology.
Methods Mol Biol. 2024;2735:63-103. doi: 10.1007/978-1-0716-3527-8_5.
3
Dual effects of the small-conductance Ca-activated K current on human atrial electrophysiology and Ca-driven arrhythmogenesis: an in silico study.
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H896-H908. doi: 10.1152/ajpheart.00362.2023. Epub 2023 Aug 25.
4
Coupling and heterogeneity modulate pacemaking capability in healthy and diseased two-dimensional sinoatrial node tissue models.
PLoS Comput Biol. 2022 Nov 21;18(11):e1010098. doi: 10.1371/journal.pcbi.1010098. eCollection 2022 Nov.
5
Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty.
PLoS Comput Biol. 2021 Oct 19;17(10):e1009536. doi: 10.1371/journal.pcbi.1009536. eCollection 2021 Oct.
6
Sex Differences in Drug-Induced Arrhythmogenesis.
Front Physiol. 2021 Aug 19;12:708435. doi: 10.3389/fphys.2021.708435. eCollection 2021.
7
Identifiability analysis for stochastic differential equation models in systems biology.
J R Soc Interface. 2020 Dec;17(173):20200652. doi: 10.1098/rsif.2020.0652. Epub 2020 Dec 16.
8
Investigational Treatments for COVID-19 may Increase Ventricular Arrhythmia Risk Through Drug Interactions.
CPT Pharmacometrics Syst Pharmacol. 2021 Feb;10(2):100-107. doi: 10.1002/psp4.12573. Epub 2021 Feb 11.
9
Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning.
Biophys J. 2020 Mar 10;118(5):1165-1176. doi: 10.1016/j.bpj.2020.01.012. Epub 2020 Jan 22.

本文引用的文献

1
Exploiting mathematical models to illuminate electrophysiological variability between individuals.
J Physiol. 2012 Jun 1;590(11):2555-67. doi: 10.1113/jphysiol.2011.223313. Epub 2012 Apr 10.
2
Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human.
Hum Mol Genet. 2012 Jun 15;21(12):2759-67. doi: 10.1093/hmg/dds104. Epub 2012 Mar 14.
3
How does stochastic ryanodine receptor-mediated Ca leak fail to initiate a Ca spark?
Biophys J. 2011 Nov 16;101(10):2370-9. doi: 10.1016/j.bpj.2011.10.017. Epub 2011 Nov 15.
4
Does the Goldilocks Principle apply to calcium release restitution in heart cells?
J Mol Cell Cardiol. 2012 Jan;52(1):3-6. doi: 10.1016/j.yjmcc.2011.10.014. Epub 2011 Oct 28.
5
Dynamics of calcium sparks and calcium leak in the heart.
Biophys J. 2011 Sep 21;101(6):1287-96. doi: 10.1016/j.bpj.2011.07.021. Epub 2011 Sep 20.
8
Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity.
Cardiovasc Res. 2011 Sep 1;91(4):598-605. doi: 10.1093/cvr/cvr143. Epub 2011 May 24.
9
Multiple models to capture the variability in biological neurons and networks.
Nat Neurosci. 2011 Feb;14(2):133-8. doi: 10.1038/nn.2735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验