Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA.
Biophys J. 2013 Mar 5;104(5):1142-50. doi: 10.1016/j.bpj.2012.12.055.
We present a parameter sensitivity analysis method that is appropriate for stochastic models, and we demonstrate how this analysis generates experimentally testable predictions about the factors that influence local Ca(2+) release in heart cells. The method involves randomly varying all parameters, running a single simulation with each set of parameters, running simulations with hundreds of model variants, then statistically relating the parameters to the simulation results using regression methods. We tested this method on a stochastic model, containing 18 parameters, of the cardiac Ca(2+) spark. Results show that multivariable linear regression can successfully relate parameters to continuous model outputs such as Ca(2+) spark amplitude and duration, and multivariable logistic regression can provide insight into how parameters affect Ca(2+) spark triggering (a probabilistic process that is all-or-none in a single simulation). Benchmark studies demonstrate that this method is less computationally intensive than standard methods by a factor of 16. Importantly, predictions were tested experimentally by measuring Ca(2+) sparks in mice with knockout of the sarcoplasmic reticulum protein triadin. These mice exhibit multiple changes in Ca(2+) release unit structures, and the regression model both accurately predicts changes in Ca(2+) spark amplitude (30% decrease in model, 29% decrease in experiments) and provides an intuitive and quantitative understanding of how much each alteration contributes to the result. This approach is therefore an effective, efficient, and predictive method for analyzing stochastic mathematical models to gain biological insight.
我们提出了一种适用于随机模型的参数敏感性分析方法,并展示了这种分析如何对影响心肌细胞局部 Ca(2+)释放的因素产生可在实验中检验的预测。该方法涉及随机改变所有参数,对每组参数运行单个模拟,对数百个模型变体进行模拟,然后使用回归方法统计地将参数与模拟结果相关联。我们在包含 18 个参数的心脏 Ca(2+)火花的随机模型上测试了这种方法。结果表明,多元线性回归可以成功地将参数与 Ca(2+)火花幅度和持续时间等连续模型输出相关联,多元逻辑回归可以深入了解参数如何影响 Ca(2+)火花触发(在单个模拟中是全有或全无的概率过程)。基准研究表明,与标准方法相比,该方法的计算强度降低了 16 倍。重要的是,通过测量肌浆网蛋白三联蛋白敲除小鼠的 Ca(2+)火花,对预测进行了实验验证。这些小鼠表现出 Ca(2+)释放单元结构的多种变化,回归模型准确预测了 Ca(2+)火花幅度的变化(模型降低 30%,实验降低 29%),并提供了一种直观且定量的理解,即每个变化对结果的贡献有多大。因此,这种方法是一种有效、高效且具有预测性的分析随机数学模型以获得生物学见解的方法。