Suppr超能文献

Derecruitment of filtration surface area in paraquat-injured isolated dog lungs.

作者信息

Shibamoto T, Parker J C, Taylor A E, Townsley M I

机构信息

Department of Physiology, College of Medicine, University of South Alabama, Mobile 36688.

出版信息

J Appl Physiol (1985). 1990 Apr;68(4):1581-9. doi: 10.1152/jappl.1990.68.4.1581.

Abstract

The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验