Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Structure. 2013 Apr 2;21(4):540-9. doi: 10.1016/j.str.2013.01.017. Epub 2013 Mar 7.
In eukaryotes, CCT is essential for the correct and efficient folding of many cytosolic proteins, most notably actin and tubulin. Structural studies of CCT have been hindered by the failure of standard crystallographic analysis to resolve its eight different subunit types at low resolutions. Here, we exhaustively assess the R value fit of all possible CCT models to available crystallographic data of the closed and open forms with resolutions of 3.8 Å and 5.5 Å, respectively. This unbiased analysis finds the native subunit arrangements with overwhelming significance. The resulting structures provide independent crystallographic proof of the subunit arrangement of CCT and map major asymmetrical features of the particle onto specific subunits. The actin and tubulin substrates both bind around subunit CCT6, which shows other structural anomalies. CCT is thus clearly partitioned, both functionally and evolutionary, into a substrate-binding side that is opposite to the ATP-hydrolyzing side.
在真核生物中,CCT 对于许多细胞质蛋白的正确和高效折叠是必不可少的,尤其是肌动蛋白和微管蛋白。CCT 的结构研究受到阻碍,因为标准晶体学分析无法在低分辨率下解析其 8 种不同的亚基类型。在这里,我们详尽地评估了所有可能的 CCT 模型与分别具有 3.8 Å 和 5.5 Å 分辨率的封闭和开放形式的可用晶体学数据的 R 值拟合。这种无偏分析发现了具有压倒性意义的天然亚基排列。得到的结构提供了 CCT 亚基排列的独立晶体学证据,并将粒子的主要非对称特征映射到特定的亚基上。肌动蛋白和微管蛋白底物都围绕 CCT6 亚基结合,该亚基显示出其他结构异常。因此,CCT 在功能和进化上都明显分为与 ATP 水解侧相对的底物结合侧。