Immunology Service, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.
Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, 28029 Spain.
Sci Adv. 2020 Dec 2;6(49). doi: 10.1126/sciadv.abb7242. Print 2020 Dec.
T lymphocyte activation requires the formation of immune synapses (IS) with antigen-presenting cells. The dynamics of membrane receptors, signaling scaffolds, microfilaments, and microtubules at the IS determine the potency of T cell activation and subsequent immune response. Here, we show that the cytosolic chaperonin CCT (chaperonin-containing TCP1) controls the changes in reciprocal orientation of the centrioles and polarization of the tubulin dynamics induced by T cell receptor in T lymphocytes forming an IS. CCT also controls the mitochondrial ultrastructure and the metabolic status of T cells, regulating the de novo synthesis of tubulin as well as posttranslational modifications (poly-glutamylation, acetylation, Δ1 and Δ2) of αβ-tubulin heterodimers, fine-tuning tubulin dynamics. These changes ultimately determine the function and organization of the centrioles, as shown by three-dimensional reconstruction of resting and stimulated primary T cells using cryo-soft x-ray tomography. Through this mechanism, CCT governs T cell activation and polarity.
T 淋巴细胞的激活需要与抗原呈递细胞形成免疫突触(IS)。在 IS 处,膜受体、信号支架、微丝和微管的动力学决定了 T 细胞激活的效力和随后的免疫反应。在这里,我们表明胞质伴侣 CCT(含 TCP1 的伴侣素)控制着由 T 细胞受体诱导的中心体的相互取向变化和微管动力学的极化,在形成 IS 的 T 淋巴细胞中。CCT 还控制着 T 细胞的线粒体超微结构和代谢状态,调节微管蛋白的从头合成以及αβ-微管异二聚体的翻译后修饰(多聚谷氨酸化、乙酰化、Δ1 和 Δ2),微调微管动力学。这些变化最终决定了中心体的功能和组织,如使用冷冻软 X 射线断层摄影术对静止和刺激的原代 T 细胞进行的三维重建所示。通过这种机制,CCT 控制着 T 细胞的激活和极性。