Cleveland State University, Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland, OH 44115, USA.
Cell Res. 2013 Apr;23(4):537-51. doi: 10.1038/cr.2013.35. Epub 2013 Mar 12.
Telomerase is a ribonucleoprotein enzyme typically required for sustained cell proliferation. Although both telomerase activity and the telomerase catalytic protein component, TbTERT, have been identified in the eukaryotic pathogen Trypanosoma brucei, the RNA molecule that dictates telomere synthesis remains unknown. Here, we identify the RNA component of Trypanosoma brucei telomerase, TbTR, and provide phylogenetic and in vivo evidence for TbTR's native folding and activity. We show that TbTR is processed through trans-splicing, and is a capped transcript that interacts and copurifies with TbTERT in vivo. Deletion of TbTR caused progressive shortening of telomeres at a rate of 3-5 bp/population doubling (PD), which can be rescued by ectopic expression of a wild-type allele of TbTR in an apparent dose-dependent manner. Remarkably, introduction of mutations in the TbTR template domain resulted in corresponding mutant telomere sequences, demonstrating that telomere synthesis in T. brucei is dependent on TbTR. We also propose a secondary structure model for TbTR based on phylogenetic analysis and chemical probing experiments, thus defining TbTR domains that may have important functional implications in telomere synthesis. Identification and characterization of TbTR not only provide important insights into T. brucei telomere functions, which have been shown to play important roles in T. brucei pathogenesis, but also offer T. brucei as an attractive model system for studying telomerase biology in pathogenic protozoa and for comparative analysis of telomerase function with higher eukaryotes.
端粒酶是一种核糖核蛋白酶,通常需要持续的细胞增殖。尽管真核病原体布鲁氏锥虫中已经鉴定出端粒酶活性和端粒酶催化蛋白成分 TbTERT,但决定端粒合成的 RNA 分子仍然未知。在这里,我们鉴定了端粒酶的 RNA 成分,TbTR,并提供了系统发育和体内证据,证明了 TbTR 的天然折叠和活性。我们表明 TbTR 通过反式剪接进行加工,并且是一种加帽转录本,可在体内与 TbTERT 相互作用并共纯化。TbTR 的缺失导致端粒以 3-5 个碱基/群体倍增(PD)的速度逐渐缩短,这可以通过 TbTR 的野生型等位基因的异位表达以明显的剂量依赖性方式挽救。值得注意的是,在 TbTR 模板结构域中引入突变会导致相应的突变端粒序列,表明 T. brucei 中的端粒合成依赖于 TbTR。我们还根据系统发育分析和化学探测实验提出了 TbTR 的二级结构模型,从而定义了 TbTR 结构域,这些结构域可能在端粒合成中具有重要的功能意义。TbTR 的鉴定和表征不仅为 T. brucei 端粒功能提供了重要的见解,这些功能已被证明在 T. brucei 发病机制中起着重要作用,而且还为研究寄生虫端粒酶生物学以及比较分析与高等真核生物的端粒酶功能提供了一个有吸引力的模型系统。