Suppr超能文献

构象熵在蛋白质功能中发挥的惊人作用。

A surprising role for conformational entropy in protein function.

作者信息

Wand A Joshua, Moorman Veronica R, Harpole Kyle W

机构信息

Graduate Group in Biochemistry & Molecular Biophysics, The Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-6059, USA,

出版信息

Top Curr Chem. 2013;337:69-94. doi: 10.1007/128_2012_418.

Abstract

Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a great challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to access experimentally is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned, and what the future may hold for this emerging view of protein function.

摘要

对于大多数涉及蛋白质的酶促反应而言,形成高亲和力复合物至关重要。在催化过程中形成米氏复合物家族及其他中间复合物,显然涉及多种多样且复杂的相互作用。事实上,仅利用分子结构来计算蛋白质与小分子配体之间相互作用的能量学,仍然是一项巨大挑战。对蛋白质 - 配体复合物自由能进行实验测定时,最困难的因素之一是蛋白质构象熵的变化。幸运的是,溶液核磁共振(NMR)弛豫方法的最新进展,使得能够将蛋白质构象状态之间的运动测量用作构象熵的替代指标。本综述简要总结了目前用于表征蛋白质快速内部运动的实验方法,如何利用这些信息深入了解构象熵,已了解到的情况,以及这种关于蛋白质功能的新观点未来可能的发展方向。

相似文献

1
A surprising role for conformational entropy in protein function.
Top Curr Chem. 2013;337:69-94. doi: 10.1007/128_2012_418.
2
The role of conformational entropy in molecular recognition by calmodulin.
Nat Chem Biol. 2010 May;6(5):352-8. doi: 10.1038/nchembio.347. Epub 2010 Apr 11.
3
Entropy in molecular recognition by proteins.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6563-6568. doi: 10.1073/pnas.1621154114. Epub 2017 Jun 5.
4
The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation.
Curr Opin Struct Biol. 2013 Feb;23(1):75-81. doi: 10.1016/j.sbi.2012.11.005. Epub 2012 Dec 13.
6
Measuring Entropy in Molecular Recognition by Proteins.
Annu Rev Biophys. 2018 May 20;47:41-61. doi: 10.1146/annurev-biophys-060414-034042. Epub 2018 Jan 18.
7
Microscopic insights into the NMR relaxation-based protein conformational entropy meter.
J Am Chem Soc. 2013 Oct 9;135(40):15092-100. doi: 10.1021/ja405200u. Epub 2013 Sep 25.
8
Conformational Entropy from NMR Relaxation in Proteins: The SRLS Perspective.
J Phys Chem B. 2017 Feb 2;121(4):758-768. doi: 10.1021/acs.jpcb.6b13034. Epub 2017 Jan 24.
10
Characterization of Internal Protein Dynamics and Conformational Entropy by NMR Relaxation.
Methods Enzymol. 2019;615:237-284. doi: 10.1016/bs.mie.2018.09.010. Epub 2018 Dec 8.

引用本文的文献

1
Analytical Framework to Understand the Origins of Methyl Side-Chain Dynamics in Protein Assemblies.
J Am Chem Soc. 2024 Mar 27;146(12):8164-8178. doi: 10.1021/jacs.3c12620. Epub 2024 Mar 13.
2
Relaxation and single site multiple mutations to identify and control allosteric networks.
Methods. 2023 Aug;216:51-57. doi: 10.1016/j.ymeth.2023.06.002. Epub 2023 Jun 9.
3
COVID-19: insights into virus-receptor interactions.
Mol Biomed. 2021;2(1):10. doi: 10.1186/s43556-021-00033-4. Epub 2021 Apr 10.
4
Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder.
J Phys Chem B. 2020 Jun 4;124(22):4379-4390. doi: 10.1021/acs.jpcb.0c02489. Epub 2020 May 14.
5
Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition.
Int Rev Cell Mol Biol. 2019;343:129-218. doi: 10.1016/bs.ircmb.2018.05.013. Epub 2018 Jun 28.
6
Isotopic Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and Dynamics.
Methods Enzymol. 2019;614:37-65. doi: 10.1016/bs.mie.2018.08.030. Epub 2018 Dec 18.
7
Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model.
Biophys J. 2018 Jun 19;114(12):2799-2810. doi: 10.1016/j.bpj.2018.04.027.
8
Implications of short time scale dynamics on long time processes.
Struct Dyn. 2017 Dec 22;4(6):061507. doi: 10.1063/1.4996448. eCollection 2017 Nov.
9
Accurate determination of rates from non-uniformly sampled relaxation data.
J Biomol NMR. 2016 Aug;65(3-4):157-170. doi: 10.1007/s10858-016-0046-9. Epub 2016 Jul 8.
10
Dynamics-Driven Allostery in Protein Kinases.
Trends Biochem Sci. 2015 Nov;40(11):628-647. doi: 10.1016/j.tibs.2015.09.002. Epub 2015 Oct 21.

本文引用的文献

1
The dynamical response of hen egg white lysozyme to the binding of a carbohydrate ligand.
Protein Sci. 2012 Jul;21(7):1066-73. doi: 10.1002/pro.2092. Epub 2012 Jun 5.
2
Resolving the complex role of enzyme conformational dynamics in catalytic function.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5699-704. doi: 10.1073/pnas.1117060109. Epub 2012 Mar 26.
3
Probing side-chain dynamics in proteins by the measurement of nine deuterium relaxation rates per methyl group.
J Phys Chem B. 2012 Jan 12;116(1):606-20. doi: 10.1021/jp209304c. Epub 2011 Dec 12.
5
The role of conformational entropy in molecular recognition by calmodulin.
Nat Chem Biol. 2010 May;6(5):352-8. doi: 10.1038/nchembio.347. Epub 2010 Apr 11.
7
Hidden alternative structures of proline isomerase essential for catalysis.
Nature. 2009 Dec 3;462(7273):669-73. doi: 10.1038/nature08615.
8
Dynamic activation of an allosteric regulatory protein.
Nature. 2009 Nov 19;462(7271):368-72. doi: 10.1038/nature08560.
9
Theory of free energy and entropy in noncovalent binding.
Chem Rev. 2009 Sep;109(9):4092-107. doi: 10.1021/cr800551w.
10
Conservation of side-chain dynamics within a protein family.
J Am Chem Soc. 2009 May 13;131(18):6322-3. doi: 10.1021/ja809915a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验