Suppr超能文献

番茄果实中草酸盐水平的降低及过表达真菌草酸盐脱羧酶后的相应代谢重排。

Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase.

机构信息

National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.

出版信息

Plant Physiol. 2013 May;162(1):364-78. doi: 10.1104/pp.112.209197. Epub 2013 Mar 12.

Abstract

The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value.

摘要

植物代谢产物草酸越来越被认为是一种对人类营养有负面影响的食物毒素。草酸在特定的底物反应中被草酸脱羧酶(OXDC)催化脱羧,形成甲酸和二氧化碳。迄今为止,人们试图降低草酸水平并了解 OXDC 在作物中的生物学意义,但收效甚微。为了研究 OXDC 在异养、积累草酸的果实中的作用以及草酸下调的代谢后果,我们在番茄(Solanum lycopersicum)中表达了来自真菌 Flammulina velutipes 的 OXDC(FvOXDC),专门在果实中表达。这些 E8.2-OXDC 果实中的草酸含量降低了高达 90%,同时钙、铁和柠檬酸的含量也相应增加。OXDC 的表达既不影响二氧化碳同化率,也不会导致转基因植物出现任何可检测到的形态差异。比较蛋白质组学分析表明,代谢重塑与转基因果实中草酸含量的降低有关。对 E8.2-OXDC 果实的蛋白质组分析表明,与野生型植物相比,OXDC 响应蛋白参与代谢和应激反应,分别是转基因果实中上调和下调最显著的类别。总的来说,我们的研究提供了对 OXDC 调节的代谢网络的深入了解,并可能为提高作物营养价值提供一种广泛适用的策略。

相似文献

7
Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.
Plant Biotechnol J. 2016 Jun;14(6):1394-405. doi: 10.1111/pbi.12503. Epub 2016 Jan 22.

引用本文的文献

2
Decarboxylase mediated oxalic acid metabolism is important to antioxidation and detoxification rather than pathogenicity in .
Virulence. 2025 Dec;16(1):2444690. doi: 10.1080/21505594.2024.2444690. Epub 2025 Jan 26.
3
Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future.
Front Plant Sci. 2023 Feb 15;13:1070398. doi: 10.3389/fpls.2022.1070398. eCollection 2022.
4
Dynamic Change of Carbon and Nitrogen Sources in Colonized Apples by .
Foods. 2022 Oct 26;11(21):3367. doi: 10.3390/foods11213367.
5
Tomato Oxalyl-CoA Synthetase Degrades Oxalate and Affects Fruit Quality.
Front Plant Sci. 2022 Jul 7;13:951386. doi: 10.3389/fpls.2022.951386. eCollection 2022.
6
Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture.
Front Microbiol. 2022 Mar 11;12:805498. doi: 10.3389/fmicb.2021.805498. eCollection 2021.
8
Regulation of Oxalate Metabolism in Spinach Revealed by RNA-Seq-Based Transcriptomic Analysis.
Int J Mol Sci. 2021 May 18;22(10):5294. doi: 10.3390/ijms22105294.
9
An Arabidopsis Oxalyl-CoA Decarboxylase, AtOXC, Is Important for Oxalate Catabolism in Plants.
Int J Mol Sci. 2021 Mar 23;22(6):3266. doi: 10.3390/ijms22063266.

本文引用的文献

1
Oxalate content of foods and its effect on humans.
Asia Pac J Clin Nutr. 1999 Mar;8(1):64-74.
8
A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity.
PLoS Pathog. 2011 Jul;7(7):e1002148. doi: 10.1371/journal.ppat.1002148. Epub 2011 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验