Institute for Economic Forecasting, Romanian Academy, Bucharest, Romania.
PLoS One. 2013;8(3):e58109. doi: 10.1371/journal.pone.0058109. Epub 2013 Mar 4.
There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles.
METHODOLOGY/PRINCIPAL FINDINGS: We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples.
The use of complex networks is valuable for understanding the business cycle comovements at an international level.
在经济学领域,应用复杂网络的文献迅速增多,这些文献主要集中于股票市场。本文讨论了将复杂网络应用于国际商业周期研究的问题。
方法/主要发现:我们基于 G7 和经合组织经济体的两个 GDP 数据集构建了复杂网络。除了著名的基于相关关系的网络之外,我们还使用了经济学中用于表示因果关系的特定工具,格兰杰因果关系。我们考虑了不同的滤波方法,以便为样本中的每个国家推导出 GDP 序列的平稳分量。研究发现,网络对去趋势方法非常敏感。虽然相关网络提供了关于各国经济同步运动的信息,但格兰杰因果关系网络可以更好地预测各国 GDP 的波动。通过使用它们,我们可以获得有向网络,从而确定不同国家对全球经济网络的相对影响。美国对于 G7 和经合组织样本来说都是关键角色。
使用复杂网络对于理解国际层面的商业周期同步运动是有价值的。